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1 Introduction

This work is motivated by frequency domain system identification of a lightly damped structure with broadband
characteristics. Current identification techniques for fitting frequency domain data often fall short of identifying
such systems [2, 6, 14]. These techniques typically model the plant as a rational function, in which the order of
the numerator and denominator polynomials is chosen to agree with the (presumed) order of the unknown system.
The numerical problems associated with high-order polynomials imposes a ceiling on the size and complexity of the
problems that can be solved. As described in [1], this difficulty can be overcome by utilizing composite curve fitting,
in which two (or more) models are identified in parallel, with each model fitting the system dynamics accurately
over a fixed frequency band.

This report supplements a paper submitted by Fisher, Jue, Packard and Poolla to the American Control Conference
[13], providing additional discussion on several of the topics therein. We have developed several Matlab™ tools, re-
quiring the p Analysis and Synthesis Toolbox, to facilitate composite curve fitting in the context of continuous-time,
multi-input multi-output (MIMO) system identification. These tools provide a minimal, stable state-space realiza-
tion; in a Controls context, there is no need to retain any of the modal information. Although this methodology is
designed for lightly-damped structures, we propose that it is valid for the entire class of stable systems.

The remainder of this paper is organized as follows: Frequency domain techniques are discussed in Section 2, includ-
ing the Santhanam-Koerner [19] curve fitting algorithm and Bayard’s multi-band fitting procedure. Additionally,
computational details of treating MIMO plants using these methods are discussed in Section 2. Section 3 discusses
how we might obtain the transfer function data. Several examples are discussed in Section 4.

Notationally, the m-input, p-output, continuous-time, linear time-invariant system to be estimated will be written
H. The frequency response of H at frequency wy will be written Hy. Frequency response data will be denoted gg
for the scalar case, and G¢ for the vector and matrix cases. For a matrix M € CP*™, vec (M) € CP™ denotes the
vector formed by stacking its columns. Euclidean norms for vectors and Frobenius norms for matrices are used.

Matlab™™ is a registered trademark of The Math Works, Inc. p-tools is a product of MUSYN Inc.

2 Frequency Domain System Identification

To facilitate the discussion of this system identification method, we will first look at the solution for a single
input-single output, SISO, system and then adjust the notation and methodology for multi-variable systems.

2.1 Fitting Frequency Data with a Rational Function

The rational transfer function for the p” order system is the following:

3
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with s = jw, and polynomials of the form n(s) = ng+nis+...4+n, 15"~ !, and d(s) = do+d1s+... +d, 1571 + sP.
Note that we choose to write the transfer function so that the coefficient of the highest order denominator term,
dp has unity value.

From experiments or modeling techniques, frequency response data has been acquired, {g,‘f}ﬁzl at L ordered

frequencies {wg}£_ ;. Our goal is to find the coefficients of the transfer function H(s) of pre-specified order that
best fits the data. We use a least-squares method to find the “best fit”; thus we pose the following nonlinear
optimization problem:

L
ff:argm}}ﬂZHQk(Qg*Hk)HQ- (1)
k=1

where H is the pt" order, strictly proper transfer function indicated above.

The relative importance of individual frequencies is expressed by a weighting curve, gy.



2.2 Santhanum-Koerner Algorithm

The nonlinear optimization problem (1) can be effectively attacked using the Santhanam-Koerner (SK) algorithm
[19]. By casting the problem into a linear least-squares form, iterative least-squares methods can be used. The
optimization problem (1) can now be expressed:

U <gf§ — %)

The SK algorithm involves locating a starting point (an initial guess), and then iterating the problem until a
solution, or a sufficiently good solution, is obtained. Thus we begin the iteration with ¢ = 0 and an initial estimate
n(s)?, d(s)°. This initial estimate involves making a guess as to the model order required to fit the data. Let’s say
we assume a model order of p, thus we start the iteration with d(s)? = (s ++)P; our initial guess for the numerator
follows n(s)? easily. Subsequent estimates are obtained by using the previous estimate for d(s) and solving:

qk(gd d(s)”l _ n(s)i'H)
d(s)*
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(n(s)"**, d(s)""') = arg min
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Thus, for the (i + 1)th iteration, d(s)’ is known, and the n; and d; parameters enter the problem linearly. If

n(s) and d(s) are parameterized using linear basis functions expansions (see for example [21]), this is an attractive
(weighted) least-squares problem.

2.2.1 Bilinear Transform

The SK procedure is subject to numerical conditioning problems associated with basis function choice. For
continuous-time problems, the associated least-squares problems involve Vandermonde matrices containing large
powers of s, and thus large powers of wg. This difficulty can be handled by using a bilinear transformation to map
the frequencies {wy} onto the unit circle, and solving the resulting discrete-time problem. For a >0:

. s—a
Z(a,s) = .
(ay5) = =2

Note that for s = ja, z = /™2, Furthermore, for s = jw <= ||z|| = 1. Data near the origin now lies near -1

on the unit disk, and data near co lies near 1 on the unit disk. This transformation provides us with a mapping
of a rational function in s to a rational function in z, and the inverse transformation, back to s also maintains
rationality. The imaginary axis is mapped onto the unit circle, and poles in right-half s-plane are mapped to the
outside of the unit circle, ||z|| > 1 and poles in the left-half of the s-plan are mapped to the inside of the unit circle,
2l < 1.

In fact, since we are assuming a stable system, we expect that all of the data will be mapped onto or within the
unit disk; we can use powers of e/“*, which are periodic and present less numerical conditioning problems. The
resulting model is then re-transformed onto a continuous-time model by inverting the bilinear transformation. This
procedure preserves rationality of transfer function matrix models.

The bilinear transformation also provides another means of weighting the data. The analog frequencies are “warped”
through the bilinear transformation; the left and right ends of the frequency range are compressed while those
frequencies in the middle are spread out on the top of the unit disk. The result of this warping is that the
frequency points which are mapped to the top of the unit disk are easily fit with a low order model in the least-
squares sense, while those approaching |1| require a much higher order to fit; however, a very high model order
estimate may be unstable, in which case we discard those estimates. Thus, the data along the top of the unit disk
will be fit better and earlier than the data at the extremes. We can select any continuous frequency « and have it
mapped to the discrete frequency /2. This flexibility permits us to “pre-warp” the data so that the continuous
frequency range of interest (centered around «) is favorably placed on the unit circle. This technique is often used
in digital filter design to retain the analog filter transition bands in the digital filter equivalent. The choice of the
“pre-warp” frequency is left to the modeler, but a reasonable choice is the geometric mean of the minimum and
maximum frequencies, (i.e. @« = ‘wiwyr).



As an example, if there is a significant amount of “flat” response data (e.g., at low frequencies, or between peaks),
it will be helpful to choose a different pre-warp term than one defined by the high and low ends of the data range.
The lack of variability in this “flat” data will cause difficulties in the least-squares problem; the set of equations
will be indeterminate due to loss of rank. In this case, it may be helpful to choose a = “w,wy, where w, and wy
correspond to the endpoints of the range in which there appears to be more “action”. Another method would be
to use the most resonant peak as the pre-warp term:

a=arg " (g%(w))-

The quality, stability and numerical validity of the estimate can be somewhat sensitive to the choice of a. It appears
that for data with broad spectral characteristics, the use of the geometric mean provides reasonable results; for
regions of data that are highly resonant, fine tuning this value, even to within a few radians along the unit circle,
can improve the stability of an estimate for a given model order. With the speed of computers available today, it
could be possible to optimize this term automatically.

2.2.2 The Least-Squares Equation

We will show the least-squares derivation in terms of powers of z. Say we have selected a model order, M, so that
our desired discrete polynomials will have the form:

d(Z) =1+ d1271 + ...+ sziM

and
n(z) =ng+niz 4. +nyz M

The minimization problem (2) now appears as the following in the Z-domain
2
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where the bracketed terms on the right side can be rewritten to form a vector of the known parameters, Y, a vector
composed of the scaled powers of e/ ¢, and a vector of the unknown parameters, ©:
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This is the weighted least-squares equation of the SK algorithm, where everything has now been weighted by the
previous estimate of d(z):
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2.2.3 Further Comments on the SK Algorithm

Unfortunately, it has been shown that the SK algorithm is not globally convergent. In particular, the resulting
model may be unstable. On the other hand, extensive experimental evidence suggests that it performs remarkably
well. However, for very high order systems, especially for lightly damped frequency responses, the SK algorithm
can yield inadequate or unstable results.

In our experience, the actual number of SK iterations required to achieve a “reasonable” fit may vary from 1 to 5
or as many as 20 or more. We have observed that fitting “ideal” data with the exact number of states results in an
oscillating iteration (in the 2-norm sense) in the least-squares; that is, while the error may be very small, it does
not (absolutely) converge. However, fitting “real” data (i.e., noisy) with the exact number of states does result in a
converging iteration. We use this fact in determining the number of SK iterations and automatically stop iterating
once the relative cost (in the 2-norm sense) falls below a user-specified tolerance.

The SK algorithm applies 1/|d(s)?| as the weight in (2) to solve for n(s)*™! and d(s)"™!, and we have found that
weighting by 1/|1/d(s)?| helps us obtain a more uniform fit, as discussed in [18]. That is, using the square root of
the previous denominator, we can de-emphasize the lightly damped modes during the next iteration. This comes
at the cost of an increased error, however, a higher model order can thus be used, and we find that ultimately a

better estimate is obtained with 1/]4/d(s)?|.

2.3 Multi-Band Fit

Transforming the data to the unit disk is not enough to overcome the numerical problems for very high-order, lightly
damped systems. The need for a system identification tool for such systems has motivated the multi-band fitting
methods of Bayard [1, 4]. The essential idea is to divide the frequencies of interest into sub-bands. Models that
fit the data accurately on each band are determined using the SK algorithm, and these are combined to produce a
model for the overall system. As each model is fit, we take into account that which is leftover from fitting the other
models. We are only concerned with fitting a stable system with a stable model. While it is possible to estimate the
total system with a stable model comprised of the sum of non-stable systems, there are potential physical behavior
differences between the stable and non-stable systems which we do not wish to encounter.

Our least-squares algorithm takes advantage of the fact that we are fitting data from one dynamical system,
and our weighting function is the same for all output channels. Sparse matrix techniques (orthogonal triangular
decomposition, QR) have improved the numerical stability and speed of our implementation of the SK procedure;
it can fit data with at least 50 or 90 states, depending on the data. This is described more precisely below.

We'll start by restricting our attention to two bands in solving the optimization problem (1). Define complimentary
weighting functions ¢¢ and ¢”* by

¢ | 1 forw<we
%=\ 0 else

and ¢" =1 — ¢*. Initialize the estimate with ¢" = 0 and H" = 0. Determine a good model H' in the low-frequency
band using the SK algorithm:

H* = argmin [|¢q(g” — (H + H"))).
Next, determine a good high-frequency model by fitting the residuals using the SK algorithm:

H" = argmin|lq"q(g” — H — H)].

Iterating between these two steps will produce a model (ﬁ ‘4 H h) that serves to match the wide-band frequency
response data. This procedure circumvents the numerical problems associated with the SK procedure and high-
order systems mentioned above.



As pointed out in [1], the use of indicator weighting functions ¢ and ¢" (2.3) is to be avoided because the DC bias
is incorrectly identified by this procedure. Bayard suggests a modification that addresses this problem and also
improves the “dove-tailing” of the composite model in the low-frequency band.

We have successfully used three tiered weights. For the frequency band €, the weight we employ is

Qr ifwr <w, forall we Q
¢ =< Qn ifwp>w, forallwe (3)
1 else

where Q¢ and Q), are generally less than or equal to 1. With this particular choice of weight, the degree to which
the estimate in the current band is improved can be controlled, at the cost of the estimate in the other bands. It
should be noted that Bayard’s weight is a special case of this in which @y = 1 and Q;, = 0. We have found that
choosing Q, ~ 107! and Qj, ~ 10~ * typically results in better overall performance. The entire procedure generally
converges much sooner and requires far fewer SK iterations to estimate each band than with indicator weights, or
no weights.

Since the choice of Q, and Q), will often depend on the nature of the problem being solved, we add these parameters
along with model order m and a to the list of parameters that the modeler can select when fitting each band.

2.3.1 Dividing the Frequency Range into Bands

It is important to understand that Bayard’s method of dividing the frequency data into bands does not require
filtering, nor does it introduce model order to the estimate. These are purely mathematical/data analysis constructs
which do not affect the physical meaning of the resulting estimate.

It may also seem intuitive to divide the frequency data into as many bands as possible, obtaining a model for each
peak. However, note that each band introduces a residual, which every other band will try to accommodate. With
n bands, there will be n(n — 1) passes at fitting the residual. Unless the bands are selected with such intuition
and accuracy so as to enable the user to pick the model order precisely with small error, there will be significant
residual dynamics which will manifest in a higher than desired model order required to fit the data.

Instead, the best route to take will involve as few bands as possible, though it may require several iterations to
pick the optimal cutoff frequencies the first time around.

2.3.2 Recommended Fitting Technique

In iterating between 2, 3,.., n bands, there are an infinite number of paths to arrive at the optimal system represented
by fixed model orders for each band. For the two band case, the path is easy: optimize the low frequency model
first by selecting a model order which minimizes the norm of the error; then move to the high frequency model and
similarly find the best model order. Iterate.

When we return to the first model, we may find that it is no longer stable. Thus, a certain amount of balancing and
proper band definition between the two models is required to ensure two stable systems. Once we are assured that
we have two stable systems, we iterate through the models until the error converges to a user-specified tolerance.

For more than 2 bands, we propose that the proper technique involves fitting the lowest band, then the second
band, then iterating between the first two bands until we reach some moderate convergence. Only then do we start
fitting the third band; thus the two lower bands are treated as the “lower band” and the third band is the “higher
band”. Again, some corrections to the model order may be required as we seek the balance between the n bands.

In fact, the best fitting algorithm appears to be the following;:

e Fit data with one band, optimizing the pre-warp term and model order to minimize the error norm; this value
should be the maximum error we can possibly obtain with multi-band methods. The resulting estimate with just
one band may be the best estimate possible.

e Divide the data into two frequency bands. Choose the cut-off frequency at an area of “zero slope”. Preferably,
this cut-off frequency will lie in the left-half of the frequency range.

e Find an optimal pre-warp term and model order for the low frequency data. Pay more attention to error norm



of this band, rather than the total error. The ideal model for this band will drop off or remain constant through
the upper frequency data. It may be possible to fit a few peaks in the high frequency band with this H.

e Find an optimal pre-warp term and model order for the high frequency data. Again, focus attention on the error
norm of this band. The ideal model for this band will drop off through the lower frequency data. It will probably
be possible to fit the higher amplitude peaks in the low frequency residual with HH.

e Iterate several times over these models. Ideally, the total error norm will drop with each complete iteration. If
not, modify the model order of each Hi or adjust the location of the cut-off frequency. The error norm may worsen
slightly between the low and high frequency estimates, but the total error norm should improve after the high band
has been fit. It may be possible that a third band is required, in which case, choose another “flat” area in the high
frequency, or larger frequency range band, and repeat this process for the lower two bands.

e For more than three bands, once the first the estimates (sub-models) for the first two bands start converging, it
is appropriate to fit the next band, until the lower three models converge, and so on.

e Once the model orders have been selected, it can be useful to start again from scratch, using the final model
orders and pre-warp values selected, and repeating the previous steps. It should be possible just to set the model
orders and pre-warp for the first two bands and iterate (at least three times) and then add the third model, and so
on. The estimate should converge more rapidly and to a lower number than was obtained previously.

It is the modeler’s decision to stop the iteration process. If all the parameters have been chosen correctly, this
process should produce a result superior to the one-band fit.

This heuristic approach can be extremely time consuming, particularly for large numbers of inputs, outputs and
states. It will be desirable to find an analytical means of selecting the cut-off bands and pre-warp terms.

2.4 Multi-Variable Systems
2.4.1 Vector case (SIMO)

The previous equations are easily adapted for a multi-output system, as the desired rational function is merely
composed of a vector of numerator functions, N(s), and (2) now becomes:

(4)

1+1 i+1 _ :
(N"(s), d"'(s)) = arg min

Q(G?d(s) — N*'(s))
A |

Additionally, note that the weighting curve is now a matrix as well. It is straightforward to incorporate left and/or
right weights as needed. MISO frequency data can easily be transposed to a SIMO form and fit as mentioned
above, however the resulting system will need to be reshaped to the proper MISO dimensions. This procedure is
the same as that discussed below for the full MIMO case.

2.4.2 Matrix Case (MIMO)

Given that all of the columns of the data were generated with the same system, we expect the underlying denom-
inator (defined by the A matrix) to be the same for all of the columns (inputs). However, if we fit each column
separately, there is the possibility that the full denominator is not identifiable for a given (arbitrary) column of
data. Furthermore, due to the noise and uncertainty of our experimental data, we may obtain a system estimate
with eigenvalues for each column which vary in a significant numerical way, even though they are in fact the same.
There are two methods to“fix” the denominator for each column: 1) perform a column fit, say, on column 1 (1st
input) data, and keep that A matrix for the subsequent columns, or 2) reshape the MIMO data to a SIMO data
set, thus fitting all of the columns of data simultaneously.

The principal advantage of the first method is that the overall system structure is maintained (MIMO). From a
computational standpoint one can focus on a subset of the total data set, and perhaps the cut-off bands and model
orders for the first (fitted) column may be set and one could perform an auto-fit on the remaining columns. The
disadvantage is there is no way to know ahead of time which column to fit first. Furthermore, what if no one
column really contains enough data to identify the full A matrix?



The principal advantage of the second method is that all of the data is fit at once with a SIMO system; all of
the data is considered in identifying the underlying A matrix. Furthermore, computationally, there is no need to
carry over the A matrix, cut-off bands or model orders to another sub-fit routine. The process of choosing the
cut-off bands for all of the data is simplified, since all of the data is visible; there is less chance of inadvertently
picking a cut-off frequency which works well for some columns of data but not for others. (Of course, there may be
significant disadvantages to this method due to wildly differing resonances at each input.) The main disadvantage
of this path is that the resulting system matrix must be re-shaped to the original MIMO configuration.

We have implemented the second method, and in the next section, the re-shaping of the fitted system from a (long)
SIMO system to the correct MIMO system is discussed.

2.4.3 Realization of a MIMO System

Restoring the SIMO system estimate to the proper MIMO shape is not a trivial task. Our method uses the so-called
Gilbert realization.

Our system identification algorithm requires a SIMO (or SISO) system, hence it returns to us a SIMO (SISO)
system which needs to be reshaped to the original MIMO dimensions through manipulation of the b, C and D
matrices.

From Gilbert, the transfer function can be expressed as a partial fraction expansion if we assume simple poles.
This realization can be written as a matrix of the poles multiplied by the product of the “B” and “C” matrices,
M.

1
H(w)=3%F  ——M,. 5
(@) = B =M 5)
where M; is a p X m matrix, and M; = L;R;, where L; is p X r; and R; is r; X m, and r; is the rank of M;. Thus,
a minimal realization of our system can be expressed as the system matrix:

)\1]7-1 0 Rl

Xl R,
0 Mely, | Ry
Li Ly - Ly | 0

The output of our system identification tool is a system matrix in this form, where the A matrix is expressed in a
“bi-diagonal” or block diagonal form (real-valued), where A = o + iw:

In order to sort and reshape this system, we need to convert A to a strictly diagonal matrix (complex-valued), sort
the eigenvalues and perform a similarity transformation on the A, b and C matrices. We want to have A in the
form:

S >
> o

Thus, we require a transformation of the SIMO system representation with bi-diagonal eigenvalues to a SIMO
system with complex conjugate pairs.



Suppose the true system is p x m, with n states. We have stacked our frequency data to get a SIMO system, and
obtain an A, b, C for the SIMO system.

First we need to diagonalize A. We assume that our system estimate gives us discrete, not repeated, poles.
Thus, the eigenvalue matrix T has full rank and A is diagonalizable, and the following will retain full row rank:
[T,A] = eig(A). Then b has only one column, and b and C are complex valued, since T is complex valued.

Next we sort the eigenvalues by the real values, and then sort by the absolute value of the imaginary value. This
will ensure that the real-valued eigenvalues are kept together, and that the conjugate pairs are grouped together.
Keep track of the sorted array indices and sort the columns of T accordingly, to find the re-ordered eigenvalue
matrix T. Use T to transform the system matrices to an ordered system representation. Thus

VAT = A_sorted
1y
CT.

j’-,,
j‘i,,

Q‘ S :Bz

Then calculate M; with the ith column of C and the ith row of b to reshape the system to the original input/output
dimensions. M; = reshape(C;b;,p,m). M; can then be factored into the product L;R; using a singular value
decomposition approach. Recall, rank(H;) = r, then

UV = svd(M;)
Li = U2
R, = xY2v*

Note that ¥, = X(:,1:7) and ¥, = (1 : r,: 7). Now we have a complex-valued state-space realization for our
system that is p X m. Note that: LlRl = élbl = Ml and Li+1Ri+1 = C’i+1bi+1 = Mi+1 = Mi . Thus, where 7 is
incremented by one for each real-valued A;, and by two for each complex-valued \;. For each of the M; subsystems,
one may choose to evaluate the spread of the singular values and reject the singular values oy less than Aoy,
where A is a user specified value. In these cases, the value of rank; will be equal to the number of singular values
which exceed the tolerance.

Finally, we perform a state transformation to realize our real-valued state-space. This last real transformation is
implemented implicitly using (6) and (7) below. We define the transformation matrix, F, as the following:

[ L
F—{Ir —jfr]’

which results in the following equality:

F_l[o—i—]w 0‘ }F:[o —w}
0 o —jw

The eigenvalues are sorted, so for complex conjugate eigenvalue pairs, A; and \;;1, the corresponding L;, L;;1 pair
and R;, R;,1 pair are also complex conjugates. Thus

(L Lin |F = [W+ix Wix}“: jfgr}
= [2w —2X ] =] 2Re(L;) —2Im(L;) ], (6)
and
S B eI R RE A



For complex-valued eigenvalues we have the following real-valued A;, B;,C; matrices, where daug = diagonally
augment, and the index is iterated by two:

. i real(Xi)lrank  —imag(Xi)Irank
A; = daug (Az—l,[imag()\i)[mnk real(Ai) Irank

B; 1
B = real(R;)
imag(R;)
éi = [éi71 Q[Teal(Li) —imag(Li)] ]

For the real-valued eigenvalues, the iteration is simplified:

Ai = daug (Ai—l, [ Ailrank ])
o [ B
b= [ R, }

3 Obtaining the Frequency Response Data

Frequency response data can be acquired from simulations or from experiments. In either case, there will be some
transient response, effect of initial conditions, and there can be noise.

3.1 Steady State Response and the Transfer Function

How do we know that the steady state response of a stable system excited by a sinusoid gives us the transfer
function of the system? What about the transient dynamics? Recall that the convolution integral is the following:

y(t) = / gt = TYu(r)dr. (8)

If the input is a complex vector at the real frequency w, u(r) = @e’“7, and n :=t — 7 then

t
y(t) = /g(t—r)ﬂej‘”dT
0
t .
Y
0

¢
— ej“’t/ g(n)efj“mdn U.
0

Furthermore, the integral can be represented as the sum of two infinite integrals, and using the definition of the
Laplace transform:

y(t) = [/Ooog(n)e_j‘“"dn/toog(n)e_j‘“"dn} i

G(s)\S:jwﬂej“’t — ej“’t/ g(n)e_j“’"dn .
t



Thus y(t) is the sum of the steady state response, yss(t), and the transient response of the system, y;(¢t). Where
the steady state response is the transfer function evaluated at jw times some sinusoidal input.

But how do we know that y;(¢) truly decays? If we look at the magnitude of y;(¢) for any ¢t > 0

()] =

o0
ej“’t/ g(n)e 7“dn u
t

— el

| stmenan -
A g(n)ej‘”’dn‘
al [ late =] an

o

|l -

IN

lg(n)| dn.

I
=

t

If we assume a BIBO (bounded input, bounded output) convolution system, then y;(¢) has a finite value, and as
t — oo the value of this integral gets smaller, lim;_,oy:(t) = 0, so that finally the output of the system is

Y(t) = G(s)|s=ju e’ + (1),

and the steady-state behavior of the system (as t — 00) is
Yss(t) = Gjw)ae’™".

Thus we know that the steady state response to a complex sinusoidal input will result in a sinusoidal output, of
different magnitude and phase. The relation between the input is our transfer function at s = jw.

3.2 Experimental Determination of the Transfer Function

Given a sinusoidal input, we can consider two principal ways to determine the transfer function of any stable
system: 1) wait for the ”steady state” or 2) perform some calculations on the real-time data and extract some
"steady state” information from the transient portion of the signal.

Let’s look more closely at the content of the data signal:
y(t) = r(t) + Acos(wt) + Bsin(wt) + n(t).

For a real experiment, we will have effects from initial conditions and the transient, r(t), and from noise n(t). We
assume that our noise has a white distribution.

Since we know the input frequency for each test, and since we will be operating in the linear range of the system,
at steady state we can determine the magnitude and phase (or cosine, sine coeflicients) rather easily, even in the
presence of noise.

3.2.1 Waiting For Steady State

The brute force method entails constantly monitoring the output data and comparing the last period or so of data.
Given some error criterion, §, we can determine when to stop. For instance we can look at the norm of the error
between two adjacent periods of data to determine how close we are to the steady-state. Depending on the noise
of the measurement system and the transient characteristics of the physical system under test, this process could
conceivably last several minutes per frequency.
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We know that the data looks like:
y(t) = A%cos(wt) + Bsin(wt) + n(t) + r(t),

where A° and B° are the true parameters.

Furthermore, given that we are applying a sinusoid of known magnitude and phase, we can correlate the output
with the input to obtain an estimate of the magnitude and phase parameters:

A(t) = % /t o)y’ ()ix
and
B(t) = % /t P sin(woN)y?(A)dA. (9)

Once we have achieved steady state, the estimates of A and B from (9) are fairly accurate.

3.2.2 A Statistical Approach, Finite Time Experiment

But can we use information even while the transient data is not small to determine our parameters? We are
motivated to start the parameter estimation process early so that the duration of the experiment is reduced, and
so that in using more data, the calculated variance of the measurement noise will be low.

It seems reasonable to find a way to estimate the parameters before, or just as steady state is achieved, but when
will that be? Let’s say we know what the variance of the noise is.

As the transient settles down, we expect the estimate of the parameters A(t) and B(t) to vary on the same order as
the noise, or some small multiple thereof (say, 60). Furthermore, we expect that at some time ¢, the estimates of A
and B will have some small variance, proportional to the noise. We therefore propose that we can get a reasonable
estimate of our parameters by averaging the data from ¢; to the final time, ¢;.

p— /th(t)dt

tf _tl tl

and

R 1 ty
B= / B(t)dt.

t1

How should we estimate ¢17

Let’s look at the envelope of the estimates. For instance, for parameter A

M) = maz[AN)],A>1
m(t) = min[AN)],A >t
o(t) = M) —m(t).

And we can estimate ¢; as the intersection of, 60 and §(¢), where o is the standard deviation, and 60 represents
the range in which a large percentage of the of the data lies.

Since we are dealing with a set of sampled frequency points, we have to sum rather than integrate, where N is the
number of data points per frequency, N = T'/Ts and p is the index of the data point of interest:
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T
k=p—N
and
2T, ~~ . d
B(p) = — > sin(wok)y (k)
k=p—N
4 Examples

In this section, we present four examples. The first looks at a simple constructed system, demonstrating the role of
the pre-warp term and multi-band fitting. The next example involves system identification of a simulated (virtual)
flexible structure using the exact frequency response. For the third example, we’ve used the finite time sine-wave
algorithm to simulate the frequency response for SISO sub-system of the system used in Example 1, with additive
and multiplicative noise included for the simulated experiment. The last example illustrates this fitting method

using frequency response data from a woofer.

2
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Figure 1: System Composed of Three Separate, Stable Systems.
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Figure 2: Estimation Display.

4.1 Example 1: Basic Multi-Band Fitting Technique

Figure 1 illustrates the frequency response of a system composed of three systems, each with dynamics in different
frequency ranges. The three systems are not quite mutually exclusive, as the low end of the frequency response for
the higher frequency systems does not roll-off very quickly. Note that there is some cancellation occurring between
the frequencies 30 and 100 radians/sec.

Each system has eighteen resonant modes, arranged as six dominant modes, with a cluster of three resonances at
each mode. The separation of the cluster of frequencies was chosen at random within some neighborhood. The
damping coefficient for each modal frequency was generated by randomly choosing the damping coefficient from
some allowable range. Thus, these systems were generated to exhibit lightly damped behavior.

The estimation tool presents the user with a six-panel figure (Figure 2), in which the first column of panels shows
the data (all output channels, if applicable) and the estimate for each band, the second column shows the data for
the current (output) channel over the entire frequency range. Also included in this pair of panels is the estimate,
residual and total residual. The third column of panels shows the the residual and estimate for the current band
and output channel. Since this is a SISO system, only one channel is shown. The resonance frequencies for each
system were chosen from a user defined range, and those ranges are indicated by the vertical lines in the central
column panels.

Note that the figures in the right column appears to show data from only one system, not the system and the
estimate; this is because the estimate, in this case a 20th order system, fit the data in this band very well, with an
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Figure 3: Effect of Pre-Warp Term on Bilinear Transform.

error norm less than 1.6 (normalized 2-norm). The figures in the center column indicate that this system doesn’t fit
very well outside of Band 2, but that is acceptable, and as we move on to the next Band, our system estimate will
fit the residual of the estimates for the first two bands, as shown by the dotted line, and not the original system
data.

Figure 3 illustrates the effect of the pre-warp term on the bilinear transform. The top left figure shows how the
frequency range has been mapped to the unit disk, with the pre-warp term marked by the big dot at 7/2 radians.
The top right figure shows the frequency range in Band 1. See how the frequency ranges, as marked by their
respective pre-warp terms, are crowded on the right side of the unit disk, near 0 radians. The lower left figure
shows the frequency range of Band 2. In this case, since the frequency ranges for each system were simply scaled
by the log10 of the frequencies, this plot has a very symmetric look. The lower right figure shows the frequency
data over Band 3; again, see that the frequency ranges for the lower two bands are crowded on the left side of the
unit disk, near 7 radians.
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Figure 4: Exact Frequency Response for Virtual System.

4.2 Example 2: Fitting Exact Frequency Response Data

We have chosen a small input-output system as our next example. Using a random system generator, we simulated
a large-order system with the properties as shown in the Table below.

parameter value
inputs 3
outputs 2
dominant modes 30
neighboring modes 3
frequency range 1 to 300 rad/sec
frequency separation tolerance .04
damping coefficient .01 -.05
total states 180

Table 1: Example 2: Virtual System parameters.

The exact frequency response for all input and output channels for this system is shown in Figure 4. The frequency
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Figure 5: Highest Possible Stable Fit, One Band, 116 states

response for this system was converted to a 6 x 1 system.

With a one-band fit, we were able to find a model with 116 states and a normalized error norm between the system
and the estimate of 0.63. This estimate was obtained with a pre-warp term of 127 rad/sec. This estimate is shown
in Figure 5. Note that the resonance peaks were not fit very well, with respect to the absolute magnitude.

We can improve on this estimate by using the multi-band method. We chose three frequency bands, with cutoffs at
28.64 and 234.43 rad/sec. The final estimate used a model order of 21 for the low frequencies, 68 for the medium
frequencies and 29 for the high frequencies. We optimized the pre-warp term, choosing 10 rad/sec, 87 rad/sec and
245 rad/sec, respectively. Figure 6 shows the difference between the data and an estimate with 236 states, and a
normalized error of 0.17. Table 3 lists the progress of the total error of the estimate through 25 full iterations. In
comparing these results with those of the single band estimate, note that the low frequency data is fit very well
with the multi-band approach. We believe that a proper re-selection of cut-off frequencies in the upper frequencies,
and choosing four bands instead of three, would provide an improved estimate.

Figure 7 shows the percentage error between the data and each of the two system estimates presented.

Figure 8 shows ones of windows during the estimation process for this system. Since this is a multi-band system,
the far left panels show all 6 outputs of the effective system (SIMO form). The middle and right panels show the
data and estimate for the current channel only. We can see that the error in this band (Band 1) is fairly low,
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Mag 1,3

Figure 6: Balanced Multi-Band Solution, Three Bands 236 states

No. SK iterations 2-norm of

Iter | band 1 band 2 band 3 | Est. error
1 3 3 2 0.235
4 2 2 2 0.205
7 3 2 2 0.194
10 3 2 2 0.188
16 3 2 8 0.171
19 3 2 7 0.164
22 3 2 7 0.159
25 3 2 7 0.155

Table 2: Example 2: Iteration summary.

between le-2 and le-4.

Now we have to restore the estimate to the original dimensions, and determine if we can reduce the order of the
estimate. Figure 9 shows the Hankel Singular values of the estimated system. If we choose a truncated model order
of 230 states, as suggested by the rapid drop off in the singular values, the resulting truncated estimate has an
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Figure 7: Percentage Error, One Band Fit and Multi-Band Fit.

error of less than le-5 as compared to the full estimate. We know that the original system has 180 states; choosing
a truncated model order of 180 states results in an error of less than le-2 in all frequencies, compared to the full
estimate. (See Figure 10)

Figure 11 compares the poles of the original system and those of the truncated system. We see that a few
pairs of poles near the origin are easily determined; the original poles (denoted by z’s) are spread in a roughly
triangular/arrow pattern, while the estimated system places many poles into a set of rectangles, roughly bounded
by +£5150 and +5250. The estimated system also has seven pairs of poles beyond this figure, located between (-20,
+j250) and (-1400, £j750). Truncating this estimate further, to 173 states, moves some of these poles towards the
origin, several real poles are introduced.

4.3 Example 3: Fitting Simulated-Experimental Frequency Response Data

The simulated data shown in Figure 12 was obtained using the algorithm discussed in Section 3.2.2. Additive noise
of .1% and multiplicative noise of .001% were applied to the simulation.

Figure 13 shows the time varying parameter estimates for A and B at a frequency of 2 rad/sec. The lower figures
detail the range of the estimate envelope for each parameter and ¢; is defined at the point where this curve crosses
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Figure 8: Display During Estimation Process.

the threshold.

Figure 14 illustrates the estimation time, ¢, at which the parameter variance was less than 6o of the noise variance
(additive). The upper plot shows the time in seconds and the bottom plot shows the time in terms of the number of
periods. The maximum number of periods to sample was set to 100, and we see that some of the mid-frequencies,
and at the higher frequencies, very little data was used in the estimate, thus accounting for the poor quality of the
frequency response data.

With a one band fit, we were able to obtain a 85th order stable system with a normalized error of 2.167. We used
a pre-warp term of 90 radians. This estimate was not improved with the multi-band method.

4.4 Example 4: Fitting Real Frequency Response Data from a Stable System

Certainly, a speaker is not the highly resonant, flexible structure we have originally designed this method for. But
can we expect this method to work well for all stable structures?

The experimental data is illustrated in Figure 15. Using the original SK algorithm, the highest stable fit was
obtained with 76 states and an error norm of 2.1884. Recall that the algorithm uses the fraction W rather than
1

T which is the default for our code (see Section 2.2.3).

The percentage error between the data and estimate is also shown in Figure 16. We obtained a 113th order system,
with cutoff frequencies at 5.3 Hz and 87.5 Hz. The warp term for the first band was 3 Hz, and for the second band
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Figure 9: Hankel Singular Values.

it was 40 Hz. The normalized error after 10 iterations was 0.407.

Balancing the estimate did not yield any reduction in the number of states of the estimate. We were able to
truncate the system to 104 states and maintain an error less than 2e-4. However, since some of the data at the low
frequencies was already on the order of le-4, this error could be considered unacceptable.

Table 3 shows the relative performance on this data using a single-band fit. Note that even though the error norm
is fairly small with a pre-warp term of 700 rad/second, the performance of the fit at low amplitudes (notably at the
low frequencies is poor). This table illustrates the general benefit that can be gained from mapping the data onto
a specific portion of the unit circle. Two of the implementation issues we’ve discussed are illustrated here: the use
of d'(s) as a weighting function, and the pre-warp term. Note that the use of both of these techniques provides a
higher order fit and a smaller error (in the 2-norm sense). Of course, with such a high dynamic range, this one-band
estimate achieves the lower error at the cost of ignoring the low magnitude data in the low frequencies.

5 Conclusions

Frequency domain system identification of high-order, lightly-damped, stable structures,suitable for control appli-
cations, is facilitated through the combination of the following key ideas:
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default pre-warp user pre-warp
Weight | 84.97 rad/sec  norm error 700 rad/sec  norm error
1
o 76 2.18 127 0.19
. 100 2.09 149 0.17
d(s)

Table 3: Highest Order Stable Estimates and Error, Single-Band Fit.

e Re-Shape the system (MIMO) as a one input system (SIMO),
o Bilinear Transform - map the continuous-time data to a favorable region in the discrete domain using the pre-warp

term,

e Santhanum-Koerner procedure - use iterative least-squares method,
e Composite curve fitting - divide the data into sub-bands,

e Realize the original MIMO system from the estimate.

Further work is desired to determine analytic means or algorithms whereby this system estimation process can be
automated. Areas where such study would be beneficial include:
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Figure 11: Comparison of Poles, Original and Truncated System.

e Optimal cut-off frequency selection,
e Determining lower and upper error bounds for a set of cut-off frequencies and model orders, and
e Automated optimization of the pre-warp term.

Methods for further refinement of the resulting estimate, including time-domain refinement and parametric refine-
ment are available.
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