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Abstract

Signal Estimation in Structured Nonlinear Systems with Unknown Functions

by

Eric Leon Wemhoff

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California at Berkeley

Professor Andrew K. Packard, Chair

We consider the estimation of unknown signals in structured models that are

interconnections of known linear dynamic systems and unknown static maps, and contain

unmeasured exogenous disturbances. A main motivation for analyzing such an issue is a

system identification problem in which such an interconnection exists, and the static maps

are to be identified when the inputs and/or outputs of the maps themselves are not available,

and instead we must investigate them by interacting with the larger system.

Our technique is to formulate criteria and then search for estimates of the unmea-

sured signals based on three main types of criteria, these being that they are consistent with

the linear dynamic system, that stochastic assumptions for disturbance processes are met,

and that input-output pairs of the static maps are consistent with there being a static rela-

tionship between them. After revealing the basic approach to estimating signals, some time

is spent on each of these three main parts of the estimation problem, presenting alternatives

and implementation details.

The “staticness” consideration is a main contribution, and we present various

possibilities for enforcing it. These are what make our formulation different from some

other common estimation methods such as the Kalman filter or a least squares formulation.

Computational considerations are important because the entities being estimated

are signals, and so the number of decision variables is necessarily large. We focus on solution

elements which are compatible with efficient convex programming methods, and what can

be done when they are not. We show examples and evaluate performance and usability of

the method.



2

In a later chapter we present an approach to computing bounds on how good esti-

mates can be guaranteed to be, for estimation formulations that meet certain assumptions.

Alternatively, something can be learned from the bounding ideas about issues that make

an estimation problem harder or easier.

Professor Andrew K. Packard
Dissertation Committee Chair
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Notation
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rank(A) rank of the matrix A
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L length of a data record

G ∼

[

A B

C D

]

G is a linear system with state-space data (A,B,C,D)

L the linear part of the canonical model

S the static part of the canonical model

z input signal of the static part

w output signal of the static part
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Xn
d−→ D(x) the sequence of random variables Xn converges in distribution to a
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random variable with distribution D
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Chapter 1

Introduction

This dissertation is concerned with system identification, for models that are struc-

tured and nonlinear. The types of structure that we consider consist of interconnections

of linear dynamic and nonlinear static components. We propose identification criteria that

can be used to formulate tractable optimization problems geared toward forming estimates

of static nonlinear components in a nonparametric fashion. Attention is given to practical

details in formulating and implementing these criteria so that the reader might quickly be

able to try some of the ideas.

In virtually every field of study models are employed to aid in representing and

understanding complex relationships. Models can help to to capture the dependences be-

tween variables in the problem, predict future outcomes, or understand the mechanisms

involved in a process. Given some system of interest and some task, an important question

is how to come upon a model suitable to the task.

There exist attractive models for many systems of interest, especially simple ones.

In ’modeling’ one endeavors to break up a complex system into smaller components, apply

existing models for each of the components, and interconnect these to form a model of the

whole. There are various occasions when more is needed.

− Some parts of the problem are not well understood. Then empirical modeling is used

to find good models, and possibly give insight into the process being studied.

− There may be unknown parameters in the model, or incorrect assumptions regarding

them. In this case parameters need to be identified or calibrated.

− First principle models can be very very complex; empirical modeling can be used to
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find simpler, workable approximations.

System identification, or empirical modeling, is the process of combining prior knowledge,

desired features, and quantitative observations of a device of phenomenon, to find a model

that is a suitable representation for the task at hand. “Suitable” is generally some combi-

nation of being of a form and complexity that makes the model convenient to work with,

as well as having sufficient fidelity to help solve problems of interest.

We are especially concerned here with identifying dynamic models, for which there

is a notion of time, and the dependent variables (the inputs) at a given time can depend on

the independent variables (the outputs) at that time as well as previous times. This is the

primary focus of “system identification”, with static modeling being an important subset of

problems. The problem has been studied in association with varied subjects, but especially

within the fields of controls and statistics. Further introduction to system identification

(with the primary emphasis on linear modeling) can be found in Johansson [22] or Ljung

[25]. The subject is important given the vast array of situations in which mathematical

models are employed, and is challenging, both mathematically and philosophically.

It is useful to keep in mind a common generic description of the system identifi-

cation process. Usually, the procedure can be broadly broken down into these parts. Start

with a device, system, or phenomenon A which we desire to model. Specify a model set

M of models from which we expect it is possible to find a satisfactory one, along with a

criterion for choosing a “best” element M ∈ M which is some sort of assemblage of the

various assumptions and constraints and desires that we want our model to satisfy. At

this point choosing the model is, in theory, a rather mechanical process of evaluating each

candidate model from the model set according to the optimality criterion. Of course for

most formulations we might try this process does not turn out to be so simple, and it’s the

search for tractable procedures that guides research in the system identification field.

When choosing from a model set that is a collection of linear dynamic systems,

system identification is well developed. Although research does continue, the issues and

tradeoffs are well understood and methods for linear system identification are mature. This

includes the ability to handle parametric estimation (e.g. prediction error parameter estima-

tion methods) and nonparametric estimation (e.g. empirical transfer function), frequency

and time domain methods, models with structure as well as canonical models, and uncertain

models Ljung [25], Söderström and Stoica [39], Johansson [22]. Further, there are compu-

tational tools out there which handle a wide array of linear system identification problems
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Ljung [26].

However, as would be expected for the much more complex case of nonlinear

systems, results are more difficult, more fragmented, and less general. The need arises

when the class of linear models is too restrictive. Many physical systems exhibit some

degree of nonlinearity. Often it’s sufficient to represent a system using a linear model, but

the nature of the nonlinearity, applications requiring high-fidelity modeling, and the desire

to increase performance over that afforded by linear analysis, often make it necessary to look

to nonlinear model sets. For instance in controls applications a linearization of the plant

behavior about an operating point can be sufficient for regulation problems, but problems

involving tracking or path planning where there are large deviations may make it more

important to account for nonlinearness. If the system has non-smooth linearities at the

origin (e.g. Coulomb friction) then linearization may be inappropriate.

A brief overview of methods in nonlinear identification is in order. To orient

oneself a number of fairly recent surveys covering various aspects of the subject may be

useful, including Billings (1980), Sjöberg et al. (1995), Juditsky et al. (1995), Pearson

(1995), and Haber and Keviczky (1978).

1.1 Kernel Models

Some approaches begin with a very general model set. A large class of nonlinear

functionals can be represented in the form of a Volterra series, which maps input signals u

to output signals y as

y(t) =
∞∑

n=0

∫

. . .

∫

hn(τ1, . . . , τn)
n∏

i=1

u(t− τi) dτ. (1.1)

The behavior of the model depends on the kernels hn(·) of the integral functionals, and it is

these functions that are to be identified. A closely related model was introduced by Wiener,

with the form

y(t) =

∞∑

n=0

[Gn(kn, u)](t), (1.2)

where the functionals Gn are also integral equations in u, with kernels kn(τ1, . . . , τn) (these

were used by Wiener as a sort of orthogonalized version of the Volterra kernels, via a

Gram-Schmidt procedure). In discrete-time models the integrals are replaced by sums.
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Much of the earlier studies in nonlinear system identification focused on estimating

the kernels in these models. They are an extension of the convolution representation of linear

systems, as in

y(t) =

∫

H(t, τ)u(τ) dτ. (1.3)

Here the kernel H is the impulse response. For linear time-invariant (LTI) systems a related

model description is the transfer function, the Laplace transform ofH(t−τ). Analogously we

can consider the transform domain for Volterra kernels, using the multi-dimensional Laplace

transform, for nonlinear time-invariant systems. Volterra models are also an extension of

a polynomial expansion for static functions. For instance if the kernels in (1.1) are of

the form hn(τ1, . . . , τn) = h̄nδ(τ1, . . . , τn) (multidimensional Dirac delta function) then the

model reduces to

y(t) =
∞∑

n=0

h̄nu
n(t). (1.4)

Schetzen (1980) goes into more depth about the theory of Volterra and Wiener

functionals. An important result is that every continuous nonlinear time-invariant opera-

tor can be approximated arbitrarily closely by a Volterra functional (Frechet 1910, Boyd

and Chua 1985). The surveys by Hung and Stark (1977) and Billings (1980) discuss avail-

able identification methods for the kernels. These generally treat the input and output as

stochastic processes, and work in terms of estimates based on joint correlation and higher-

order statistics of the output and lagged versions of the input. Some provide an estimator

for the value of a kernel at a point in its input space e.g. k̂n(τ1, . . . , τn), others work with

various functional expansions of the basis functions and derive estimators for the expansion

coefficients (the former lead to nonparametric methods and the latter, parametric). The

computation for the estimates is involved, and usually assumptions are made on the distri-

bution of u which make the problem more solvable (typically white, Gaussian statistics).

Others have worked in the frequency domain, producing estimates that are analogous to

the empirical transfer function estimate (ETFE) of LTI systems (Brillinger [7], French and

Butz [13]).

1.2 Curse of Dimensionality

An important fundamental difficulty arises, even when computation of these es-

timates is doable, commonly called the curse of dimensionality. Suppose we were able to
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somehow “sample” the n’th kernel function hn(τ1, . . . , τn) directly at any τ we wished. This

is of course an ideal scenario, for with a typical system there is no possibility to isolate hn

in this way. But suppose it is possible. To gather data about hn on a grid with L points

per input dimension, or to gather information about hn in some other representation (e.g.

a function expansion) but with the same granularity, or resolution, requires on the order

of Ln samples. This says something about how much data will be needed, even in an ideal

situation, to identify hn to a desired accuracy. The task grows exponentially with n.

Indeed, even the problem of how to efficiently represent functions of more than

two or three variables, or store them in computers, is nontrivial. It implies that, without

further knowledge of hn, for large kernel order n (hence large input dimension) the amount

of data needed to achieve accurate results quickly becomes unmanageable.

In the case of kernel models the problem is compounded by their moving-average

nature. Think about finite-dimensional stable LTI systems. The impulse response is a

completely general representation, but often it’s very inefficient, in particular for systems

with infinite impulse response. We could approximate the system by retaining only those

points which are greater than some threshold, and the shorter the system’s “memory” i.e.

the faster the impulse response dies out, the less we have to store. But in general even this

will require much more than the small number of parameters in a state space or input-output

difference equation representation. In the same way for the Volterra series, the portion of

the domain of hn(τ1, . . . , τn) over which we need to measure and store it for a given level of

approximation is determined by the length of the system’s memory. This is bad news for

using kernel models to represent autoregressive nonlinear dynamic systems.

The strength of kernel models is their generality. However they tend not to perform

the representation elegantly, and due to data and computational requirements authors very

rarely have attempted to estimate more than up to the second or third order kernels (Billings

(1980)). In this case the dream of a model set that can fit essentially anything becomes a

rather limited functional space. A further disadvantage of these models is the difficulty of

incorporating a priori knowledge, or in giving any sort of interpretation to estimates (Hung

et al. 1977).
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1.3 DEQ Models

The other type of model that has been used in nonlinear identification is repre-

sented by differential or difference equations (DEQs). The general nonlinear state-space

model, in discrete time, is

x(t+ 1) = Fx(x(t), u(t), e(t)) (1.5a)

y(t) = Fy(x(t), u(t), e(t)), (1.5b)

and the prototypical input-output model that has been studied is the NARMAX (non-linear

auto-regressive moving-average exogenous input)

y(t+ 1) = F (φ(t)), (1.6)

where φ(t) ∈ Rn is a regressor vector of selected past inputs, outputs, and disturbances,

φ(t) =
(
y(t), . . . , y(t− ny), u(t), . . . , u(t− nu), e(t), . . . , e(t− ne)

)
. (1.7)

These include as special cases most of the DEQ models sets that have been studied (Chen

and Billings 1989). DEQ models commonly include the noise process e which accounts

for unmeasured disturbances and mismodeling, which is not commonly found in kernel

representations.

Here it’s typical to fix the order nx for the state-space model, or ny, nu, and

ne in the NARMAX, which defines a space U of functions, and the model set associated

with e.g. (1.6) is generated as F varies over U . Sometimes we limit U to contain only

continuous functions, or ones having other smoothness properties. With these model sets

the identification task is to choose the optimal element from an infinite-dimensional function

space, based on a performance criteria.

1.4 Parameter Estimation: Strengths and Weaknesses

The most general tools available for solving problems that arise in system iden-

tification are derived from generic nonlinear programming (NP) methods which search for

an optimal parameter vector that minimizes an objective function. This usually involves

a model set that is specified in terms of a finite set of unknown parameters and possibly

constraints on the parameters, and a criteria that measures the quality of a particular value
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of the parameter, typically in terms of the corresponding model’s ability to match measured

input-output data. Depending on the parametrization and objective the solution will be

more or less computationally attractive. For instance oftentimes the problem is formulated

so that in the end it is a least squares problem, which is easily handled. For more gen-

eral criteria and constraints, assuming they are differentiable, a variant of Gauss-Newton

descent is a popular choice.

In a stochastic setting this process is known as parameter estimation, where we

more or less treat the model as making probabilistic statements about outputs given the

regressor vector, and search for the parameters that make the model most consistent with

the distribution of the unknown disturbance and observed input-output statistics. A typical

performance criteria for this is the sum of squared prediction errors. This criteria is

attractive in terms of estimator properties and convergence analysis, and works well in

practice.

Optimization options are a good fit for situations in which there is enough prior

knowledge to feel confident in restricting the search to a model set which is characterized

by a small (finite) set of unknown parameters. This is known as a parametric model, and

applying parameter estimation techniques we can achieve the dual objective of low bias and

variance. Typically this type of model is the result of first-principles, physical modeling, and

the parameters have natural physical meaning. It can also result from truncated function

expansions.

In order to apply parameter estimation to searching infinite-dimensional spaces,

like when there is an unknown function to be estimated, we must first restrict the search

to a finite-dimensional manifold VM of the original space V, parametrized by a vector

θ ∈ RM . For instance it is common to expand the model function as a polynomial, F (φ; θ) =
∑∞

|α|=0 θαφ
α1
1 . . . φαn

n (using multiindex notation), and then truncate the number of terms

used to a finite value.

An extremely attractive feature of the NP or parameter estimation approach is

that it’s a flexible tool. It can be made to work for a vast array of model structures,

identification objectives, and constraints, and generally does not depend on special input

signals. For instance it can be used for identification of the general DEQ models as well as

Volterra and Wiener kernels or finitely-parametrized models. If there is anything resembling

a big hammer in system identification (linear as well as nonlinear), this is it. For more

background material on parameter estimation see Ljung (1999) or Sjöberg et al. (1995); for
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nonlinear programming see Luenberger (1984) or Gill et al. (1981).

However with estimation of objects like F or hn where the model set is essentially

a function space, the choice of finite parametrization can be tricky. The goal is to locate the

element of V that optimizes the performance objective. But in the parametrization if we

use the wrong “basis” functions then VM will not contain this element, nor a good approx-

imation to it, and the actual estimate will be of poor quality. Other problems arise if the

parametrization is too large. Solving the nonlinear optimization problem becomes harder,

the computation involved in searching a large dimensional space becomes prohibitive. Local

minima can be a problem as well, and so choosing an intelligent starting point is crucial.

A more fundamental reason not to simply use an extremely general function expan-

sion is known as the bias/variance tradeoff (also called the parsimony principle or overfitting

problem). In the stochastic setting once again, consider a probabilistic experiment where

an input-output record of length N is generated according to a “true” model F0, we use

a prediction error performance criteria to pick an optimal parameter estimate θ̂M,N ∈ VM

(of size M) based on the record, then another data record is generated, and we compute

the squared prediction error, VM,N . This quantity is a random variable which measures

the quality of the models generated as we repeat this experiment. Under some standard

assumptions it is straightforward to show that the expected error E[VM,N ] can be attributed

partly to bias and partly to variance (Juditsky et al. 1995, Ljung 1999). Let θM,∗ be the

model in VM which has minimum expected squared error; the error of this model is the

bias part. If VM includes a model which exactly matches the data-generating system, then

the bias is zero, and hence this seems to imply we should choose M as large as our com-

puter can handle. However since the data record is of finite length and noisy, the estimate

θ̂M,N deviates randomly from θM,∗, and this deviation is responsible for the variance part of

VM,N . This part of the error is sensitive to the number of parameters; as the record length

N becomes larger or the noise level decreases it becomes smaller, however as M increases

it becomes larger, as the estimate becomes more sensitive to noise in the data.

Therefore when using function expansions in order to apply parameter estimation

tools, one needs to choose basis functions wisely, in order to locate a quality estimate

(small bias) with a small number of parameters (small variance). For functions with high

input dimension this is especially difficult since the size of the function expansion grows

exponentially with the dimension. Ideally we want to have an expansion that ’matches

the system’, and if we don’t know how to do that, one that is somehow known to work
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well in general. Several standard choices have been studied, known under various names.

Polynomials, neural networks, radial basis functions, wavelets, splines, hinging hyperplanes,

fuzzy logic. An excellent discussion of the various choices and their properties can be found

in the two-part survey, Sjöberg et al. (1995) and Juditsky et al. (1995).

Besides imposing a finite parametrization and applying parameter estimation,

other tools for dealing with the challenges of infinite-dimensional model elements include

regularization and nonparametric methods.

In regularization methods the approach for unknown functions is to go ahead

and use a large function expansion to parametrize the function space, and then during

the optimization phase add a term that penalizes the model complexity [38], [21]. In this

way the number of terms in the expansion that actually get used, and hence the variance

contribution in the expected square error, can be controlled, while retaining the flexibility

of the more complete parametrization of the space. The regularization penalty forces the

solution to use the “right” basis functions. An attractive feature is it is compatible with

parameter optimization schemes. The practical problems of large nonlinear programming

problems remain. And the possibility remains of not including appropriate basis functions.

For instance radial basis functions are a common choice for general function approximation,

but they are inappropriate if the function being approximated is linear. Regularization can’t

help if the right basis functions aren’t included to begin with.

Nonparametric methods, on the other hand, tend to not exactly fit into the proto-

typical identification procedure described above, where choosing a model set and gathering

data are independent steps. The empirical transfer function estimate (ETFE) for the trans-

fer function of a linear system is an example of a nonparametric method. Another example

is nonparametric regression estimation from statistics, where estimates of probability den-

sity functions are formed by smoothing observed realizations of the random variable under

repeated trials. Roughly speaking, in methods given this label the philosophy is to be

guided by the data. The form of unknown model elements isn’t artificially restricted to a

finitely-parametrized function space ahead of time, before data is gathered, and the spirit

is to be able to potentially settle upon any element of the space. A common feature of

nonparametric methods is that the precision with which a function is approximated de-

pends on the length of the data record. As the data increases the approximation resolution

increases, while for small records the approximation is rough. In this way a certain level

of smoothing, or rate of data compression, is maintained. A survey paper by Härdle et al.
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(1997) points out this and other characteristic features of nonparametric methods and dis-

cusses some common approaches that are seen in statistics and time series analysis. They

state “[nonparametric methods] are . . . an exploratory tool for a better understanding of

the underlying dynamics of the process and a starting point for finding more parsimonious

models.” Oftentimes a nonparametric method is essentially a way to transform data, in

order to aid in understanding and insight into the potential structure in a problem, for

instance as an aid in choosing a block diagram structure, or efficient function expansions

for parameter estimation methods.

1.5 Structured Models

The model sets represented by the class of kernel models (1.1) and (1.2), or the

classes of DEQ models (1.5) and (1.6), are attractive for their generality. In principle they

can represent, or approximate closely, almost any model we might consider. They are used

in blackbox identification situations, in which no use is made of a priori knowledge about

the system to be identified, and so the estimate is based solely on input-output data. Little

or nothing is assumed about the device under test, and so the model set must be general

enough to be ready for anything.

It’s tempting to argue that since methods exist for working with these model sets,

then using these tools we can solve almost any identification problem. In reality there

are a number of reasons to use a more structured, i.e. a smaller, more constrained, model

set.

− apriori information: Often there is a reason to suspect that a model with a specific

form will perform well in representing a system. In this case one wants to take

advantage of this insight to restrict the set of models under consideration. Usually

this type of knowledge would be motivated by physical insight or modeling, or by a

preliminary “structure identification” step in the system identification process.

− curse of dimensionality: To some extent structured models can reduce the curse

of dimensionality, by replacing a single unknown function with large input dimension

with unknown parameters and functions of smaller input dimension.

− structure identification: Sometimes one wants to test the relative ability of various

model structures to capture a certain behavior. In this case one may not know if a
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system can be well represented by a model with a particular structure, short of trying

it. Sometimes an additional outer loop is used to determine the best model set.

− end use: The intended use of the model may impose restrictions on what model

structure we are willing to accept. For instance a linear plant model is needed if

one intends to apply linear model-based control design methods. A main motivation

for modeling in the first place is to provide a simple, transparent, and manageable

version of reality, or at least the part of it one is aiming to understand, predict, or

control. This tends to be at odds with Volterra and Wiener kernel models, as well as

DEQ models where F is the result of a function expansion in terms of a huge number

of nonphysical basis functions and parameters. These models can be unwieldy and

hard to interpret or relate to more physical characteristics. For control design simple

difference or differential equation models are most amenable to control system design

and analysis. Sometimes the goal is simply to gain understanding and insight into

the operations of the system, and the goal is essentially to find a simple or elegant

model that can reproduce the system’s behavior. For this reason it may be desirable

to constrain the model to be an interconnection of relatively simple components.

− subsystems: A model is sought for a physical subsystem which is not easily exper-

imented on independently of a larger system; thus it must be possible to decompose

an identified model of the larger system into a connection of elements, some of which

are the subsystems of interest.

“Structure” can mean a lot of things. For instance we could constrain the model

to be stable, or to possess other qualitative characteristics, or to have a specific steady state

gain, or unknown functions to possess certain smoothness properties. For our purposes a

structured model set is one that is smaller or more constrained that the general models

(1.5) or (1.6), and we’re usually talking about the form of the model equations and the

interconnections that define them when we talk about structure.

In terms of this meaning of structure, a sort of middle ground between parametric

model sets (which are highly structured) and the extremely general generic forms, are ones

formed by interconnecting simpler model sets. We can picture it graphically as a block

diagram, where the model for a given block is chosen from a specified class. Possibly this

choice of structure is guided by a priori information, and possibly the individual components

have some physical meaning. The task now is to pick the appropriate element from each of
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these constituent model sets. The hope is the individual model sets are more manageable,

being either parametric, or possibly a general form such as a NARMAX model set but where

the state dimension is smaller than the overall model set, or possibly a static function but

with smaller input dimension than unknown functions involved in a more general model

for the overall system. The overall model is constrained by the structure, and has a less

general form than e.g. a state-space model of the same overall state, input, and output

dimensions. While being more constrained and thereby to some extent alleviating curse of

dimensionality and variance issues, these model sets endeavor to retain some of the universal

nature of the more general sets mentioned above, in that they might be successfully applied

to many different situations.

Along these lines, a class of model that has been studied extensively are the so-

called block-oriented model structures. These are interconnections consisting of linear time-

invariant dynamic systems and static nonlinear functions. The overwhelmingly most com-

mon case is the cascade or “sandwich” models (linear dynamic followed by static nonlinear

followed by linear dynamic), or the two special cases of this known as the Wiener model

(static nonlinear followed by linear dynamic) and Hammerstein model (linear dynamic fol-

lowed by static nonlinear), although other possibilities are occasionally studied. The added

structure in the model equations allows a particular model in the set to be represented with

a much smaller amount of information. For instance a SISO Hammerstein model involves

two model sets, one a SISO static mapping, the other a SISO LTI system. The LTI can

be represented generally by a single-input function (its impulse response), or if a model

order is chosen, a finite set of parameters, e.g. difference equation coefficients. In general

linear dynamic systems have a much much more compact representation than the general

nonlinear dynamic system of the same order. In this case the identification problem has

been reduced to searching two single-input function spaces, or one single-input along with a

finite parameter vector. Compare this to the large input dimension of the unknown function

in (1.6).

Many specialized identification methods exist for block-oriented models. The vast

majority of studies have considered SISO elements only. Parameter estimation techniques

can be readily applied once a parametrization is chosen for the LTI and static components.

This involves the advantages and disadvantages discussed previously. Chen and Fassois

(1992) considered sandwich models, using a polynomial basis expansion for the static ele-

ment and input/output difference equation representation of the discrete-time LTI elements,
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a prediction error criterion, and used Gauss-Newton descent. Studies which parametrize

the model and apply iterative schemes that use least squares in an intermediate step include

those of Lacy and Bernstein (2002), for Wiener models, and Narendra and Gallman (1966),

for Hammerstein models. Many have applied nonparametric correlation and frequency do-

main techniques that were developed for kernel models to form nonparametric estimates

of the LTI parts (Billings 1980). Vandersteen and Schoukens (1997) consider a model set

which is a feedback interconnection of 4 LTI system and one well-behaved static function.

They use special input signals to form estimates of the first three Volterra kernels which can

then be used to solve for the frequency responses of the LTI systems. Billings and Fakhouri

(1982) shows that so-called separable inputs can be used to achieve a similar objective of

identifying the first two Volterra kernels and solving for the impulse response of the lin-

ear systems, independently of the static nonlinearity, using correlation analysis. The cases

this method can handle include Wiener, Hammerstein, and feedback systems. Subspace

identification has been applied in another, more recent method for identifying the LTI part

independent of the nonlinearity, for Wiener and Hammerstein systems; see e.g. Westwick

and Verhaegen (1996). These have the unique advantage of naturally handling MIMO lin-

ear and nonlinearities; however restrictive assumptions about the nature of the nonlinearity

are required. In these latter studies, estimation of the nonlinearity is presented as an

afterthought, once the linear parts are identified. On the other hand the static nonlinearity

is the focus of a multitude of papers which use a nonparametric kernel regression estimate

of the linear parts in Hammerstein systems which is independent of the nonlinearities, see

e.g. Greblicki and Pawlak (1994). These require user choices of windowing functions and

smoothing parameters.

1.6 Outline

This thesis introduces methods, nonparametric in nature, to treat block model

structures involving known linear dynamic parts and unknown static functions that are to

be identified. The hope, for these model sets, is to provide an alternative to parameter

estimation which offers a more natural way of approaching the problem, one which does

not involve choosing a finite function expansion or initializing parameter. Another goal

is to be more general, in various ways, than many of the existing specialized methods

for block oriented models. In terms of model structure we consider arbitrary feedback
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interconnections of constituent components that are multi-input multi-output. There is no

restriction of the form of the static nonlinearities, including discontinuous and noninvertible

ones; several of the Wiener methods only work for invertible nonlinearities, and kernel model

sets only contain analytic nonlinear functionals. We do not depend on using special inputs

(although for achieving good results, some input signals are better than others). Assumed

stochastic models for unknown disturbance signals are treated explicitly.

In Chapter 2 we define and discuss the class of models that are studied throughout

this thesis. In Section 2.3 we introduce a useful canonical representation of the general

model class, followed by a more precise statement in Section 2.4 of the specific identification

problem that the majority of this dissertation is concerned with.

In Chapter 3 we present the constituent elements of a nonparametric identification

methodology for the static nonlinearities. These elements use mainly three types of criteria

and constraints: the model structure, including the linear dynamic part of the model set;

the fact that the static functions are in fact static; and stochastic properties of unknown dis-

turbance signals. Various motivations for and properties of these components are discussed.

We place an emphasis on formulating problems that can actually be solved today.

In Chapter 4 we continue looking at these components and how they might be

combined to produce system identification methods that apply in different situations that

might be encountered. Important distinctions here include:

• which signals of the block interconnection are measured

• what are the sizes of the static functions i.e. what is their input dimension

• what apriori information do we have regarding smoothness properties, etc of the func-

tions

• which properties of the stochastic disturbance process are important.

This chapter also contains examples demonstrating properties and performance of various

assemblages of criteria and constraints, as these distinctions vary. Some consideration is

given to how computationally tractable the proposed procedures are, and how friendly they

are to implement from a user point of view.

For a certain class of the estimation formulations presented, a method to compute

a sort of bound on the estimation error is discussed in Chapter 5. The bound depends on

the assumed linear part of the system, Lipschitz assumptions about the unknown static

functions, and the particular input to the system used in the data-generating experiment,



15

and are computational in nature. In addition to bounding the estimation error, the ideas can

be used to provide insight on how the estimation performance is affected by different input

signals and features of the particular model structure of the problem. Some computational

examples are presented, and we also see that general trends and lessons learned carry over

to estimation formulations that are related to, but not contained within, the class for which

the bounds are valid.
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Chapter 2

Framework

The class of models we will be using to describe system behavior, and the types

of models that our system identification efforts result in, are state space representations of

discrete-time dynamic systems. The discrete-time choice is natural in system identification

because these problems are driven by input/output data which is typically gathered at

discrete sampling instants (although identification of continuous-time nonlinear models is

an important topic of contemporary interest, see e.g. Billings and Li [3] or the review paper

of Unbehauen and Rao [40]).

2.1 The General Discrete-Time Model

The following system of first-order difference equations is a very general represen-

tation of a discrete-time state-space model:

x(k + 1) = f(x(k), u(k), e(k), k)

y(k) = h(x(k), u(k), e(k), k).
(2.1)

Here y is the output, u and e are inputs, and x is the internal state of the system; f

determines how the state transitions and h is the readout function. These functions are

vector-valued in general, as are all signals.

For a given device or phenomenon it is generally an unattainable goal to find

a model which allows perfect computation or prediction of the measured output of that

system. A model is hard-pressed to account for every possible factor that might affect the

system, the effects of the inputs it does account for are most likely imperfectly modeled,
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and those inputs are themselves known only approximately.

In light of this it is common practice to introduce model elements, disturbances

or uncertainties that cannot be known completely. We consider models are affected by

unknown disturbance inputs; these represent that part of the system that is not explained

exactly in the model. An important part of such a model is any characteristics that can

help describe these disturbances. For instance even though the disturbance is known, there

might be good reason to think that usually it is “small”, which may in turn be interpreted

to mean that the model is “pretty good”. It is typical to use a stochastic description to

characterize typical disturbance signals. Part of this description may be embedded in the

model itself, allowing for a simpler characterization of the exogenous disturbance. In models

such as (2.1) the unmeasured or unknown disturbance part of the exogenous input is labeled

e, and the known part is labeled u.

We take a moment now to formalize a few points and define some notation. To

start off, all signals and functions associated with systems and models are real-valued. The

notion of a signal is important; this is a mapping from time, T , a subset of R, to Rn. We

deal with discrete time, in which time is a countable subset of R and taken without loss of

generality to be T = 1, 2, . . . ; thus signals are vector-valued sequences. The dimension of a

signal v is denoted nv, and v(t) ∈ Rnv is the value of the signal v at time t. As shorthand

notation the sequence (v(t), v(t + 1), . . . , v(s)) will be denoted by v[t,s], and Rn[T ] is the

space of signals of size n defined on the times included in T . When working with matrix

notation it will sometimes be useful to associate v[1,L] with the L · nv × 1 vector

v[1,L] =








v(1)
...

v(s)








∈ RLnv

The operator D defined by (2.1) maps an initial condition x(t1) = x1 and an input

signal u[t1,tf ] to a state trajectory x[t1,tf ] and output signal y[t1,tf ] (tf ≥ t1). In equations

we write y[t1,tf ] = D(x1, u[t1,tf ]), and in pictures we draw this as in Figure 2.1.

The size of the state vector nx is known as the order of the system. In a system

identification problem, to some extent the choice of the size of the state and unmeasured

disturbance signal is part of the system identification problem. Often there is a natural

choice, or alternatively various choices may be considered to see which results in the most

attractive model. At any rate we shall assume that a model order nx and number of
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Figure 2.2: Schematic of simple mass-spring-friction system.

disturbance signals ne have been settled on. Hence f and h have fixed input and output

sizes.

Recall one part of any system identification problem formulation is the concept

of a set of candidate models from which the “best” model is to be chosen. One possible

model set can be formed by considering all systems that can be described by (2.1), that

is any model which results from choosing functions f and h of the proper size. In this

situation the system ID task is to identify those two maps, with no additional constraints

on what those maps can be. This is often referred to as a type of blackbox model set, and

correspondingly we label this set MB. As it stands this set is very broad, indeed for many

specific problems of interest it is too large and we are really only interested in models that

have a more restricted form.

2.2 Example of Structure

To make ideas more concrete consider a simple example system identification prob-

lem.

Example 2.1 Consider the mass-spring system diagrammed in Figure 2.2. This is the

schematic of a physical system we wish to model. Masses 1 and 2 are connected by

a spring, and mass 2 is connected by another spring to a rigid object. Each mass
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experiences a frictional force acting on it. The input to the system which we are able

to command is a force applied to mass 1.

For whatever reason we believe that a model that can accurately represent the sys-

tem fits the following description. Each mass mi has second-order dynamics between

the resultant force acting on it and its position xi. The springs’ reaction forces are func-

tions ki(·) of their displacements, and possibly these functions are nonlinear. Similarly,

we have reason to believe the friction force experienced by mass 1 is well described by

a viscous force proportional to its velocity, while mass 2 experiences a friction force

that is a nonlinear function f2(·) of ẋ2 such as Coulomb or Stribek friction.

In continuous-time this model is described by the differential equations

m1ẍ1 + c1ẋ1 + k1(x1 − x2) = u

m2ẍ2 + f2(ẋ2) + k2(x2) − k1(x1 − x2) = 0

or as a system of first-order equations,

ẋ1 = x3

ẋ2 = x4

ẋ3 =
1

m1

[

− c1x3 − k1(x1 − x2) + u
]

ẋ4 =
1

m2

[

− f2(x4) − k2(x2) + k1(x1 − x2)
]

.

In order to use a discrete-time model that approximates these dynamics, so that we

can proceed with system identification, one possibility is to choose a sampling period

T and approximate the derivatives with forward differences, i.e.

v̇(kT ) ≈ v(k + 1) − v(k)

T
.

This gives

x1(k + 1) = x1(k) + Tx3(k)

x2(k + 1) = x2(k) + Tx4(k)

x3(k + 1) = x3(k) +
T

m1

[

− c1x3(k) − k1(x1(k) − x2(k)) + u(k)
]

x4(k + 1) = x4(k) +
T

m2

[

− f2(x4(k)) − k2(x2(k)) + k1(x1(k) − x2(k))
]

.

(2.2)
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The measured output of the system is the position of the second mass, x2. There

is additive output noise, e, hence the readout equation is

y(k) = x2(k) + e(k). (2.3)

We might for instance assume that e is white Gaussian noise with variance σ2
e .

Good values to use for the parameters m1,m2, and c1 are known, and T is de-

termined by the rate at which data is sampled. The goal is to identify the functions

k1(·), k2(·), and f2(·). This results in a candidate model set. Namely, we consider all

models of the form (2.2), where k1, k2, and f2 are free “parameters”. The task is to

find the “best” one of these models, and in the process the best estimates of the un-

known functions, using input-output data and applying criteria for model fitness. This

particular model set contains an implicit representation of prior knowledge about the

internal workings of the system. We used it to construct the model set.

A slight twist on the problem is the following. Perhaps we have reason to believe

that the two springs have identical properties, for instance two springs of the same

manufacture were used to construct the device. In this case k1 = k2 =: k, and we have

an unknown element of the model that is repeated. This reduces the model set further;

in this case we only consider models with k1 = k2.

�

The model set in this example is one which has structure. The models included are

precisely those whose model equations have the specific form described, and only those. It

excludes many of the models in the blackbox model set associated with the general system

(2.1), because we only consider those functions f and h indicated by (2.2) and (2.3). The

individual components that comprise these functions and the specific way in which they are

combined limit the possibilities for the system functions f and h.

2.3 Canonical Model Form

From this point onward we wish to work with models that are made up of two

types of operators: linear (possibly dynamic) ones, and static (possibly nonlinear) ones. We

consider interconnections of such, meaning that the input of a given component operator

is a subset of the signals which are either external inputs to the overall model or outputs
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of the component operators, and the output of the model is a subset of the outputs of the

component operators.

By way of fixing notation, a linear time-varying dynamic system G with input u

and output y is defined by its state-space equations

x(t+ 1) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t).

We follow the common convention of using the matrix of packed state-space data to represent

the system:

G =




A(t) B(t)

C(t) D(t)



 .

For dynamic operators in general, the output at time t depends on the the values

of the input at all times t ∈ T . Static operators, however, have the following property.

Definition 2.2 (static operator) An operator S : Rm[T ] → Rn[T ] is static if there is a

function s : Rm → Rn such that for all signals z ∈ Rm[T ] and all t ∈ T ,

(Sz)(t) = s(z(t)).

That is the output of a static operator at a given time t depends only on the value of the

input at time t, and not on any other portion of the input signal, nor on time explicitly.

Aside: for a static operator S a distinction might be made between the operator

itself, which maps the input sequence z to the output sequence w, and the associated

operator s which defines how the output at time t depends on the input at time t. The

intended meaning is usually clear from context and in the sequel one symbol, such as S,

will often be used to refer to both.

A sort of canonical representation for models that are interconnects of linear and

static components is achieved by grouping the linear operators into a larger linear operator

called L and the static ones into a larger static one called S. Thus we consider models which

are an interconnection of a linear system L and a static one S, as pictured in Figure 2.3. In

addition to the model’s external input and output, two new signals signals have been defined

in this interconnection; z and w are internal signals which represent the input and output,

respectively, to the static block. They are defined by the nature of the interconnection

between L and S. x is the state of L, and as before u labels the inputs to the model



22

S

L
� u

� w

�y

z

-

� �

x

Figure 2.3: Canonical model structure

which in the interconnection become inputs to L, and y are the output signals which in the

interconnection are among the outputs of L.

This looks like a “linear fractional transformation”, a tool which is commonly used

in the controls field to identify and treat separately specific types of model components.

Loosely speaking, the LFT represents the system of equations

(y, z) = L(x1, u, w) (2.4a)

w = S(z). (2.4b)

If the following is a state-space representation of L,

L =







A(k) Bu(k) Bw(k)

Cy(k) Dyu(k) Dyw(k)

Cz(k) Dzu(k) Dzw(k),







then this is a state-space form of the interconnection:

x(t+ 1) = A(t)x(t) +Bu(t)u(t) +Bw(t)w(t) (2.5a)

y(t) = Cy(t)x(t) +Dyu(t)u(t) +Dyw(t)w(t) (2.5b)

z(t) = Cz(t)x(t) +Dzu(t)u(t) +Dzw(t)w(t) (2.5c)

w(t) = S(z(t)). (2.5d)

It’s possible to eliminate z and w from these equations; combining the last two for time t,

z = Czx+Dzuu+DzwS(z),

and solving for z

z = (I −DzwS)−1[Czx+Dzuu].
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where I is the identity operator and we are assuming the inverse of the operator I(·) −
DzwS(·) is well-defined, a condition that’s generally satisfied for LFTs that result from

rearranging a set of nonlinear difference equations. Then w is given by

w = S(z) = S((I −DzwS)−1[Czx+Dzuu]),

resulting in the reduced system equations

x(t+ 1) = A(t)x(t) +Bu(t)u(t) +Bw(t)(S ◦ (I −DzwS)−1)[Cz(t)x(t) +Dzu(t)u(t)]

(2.6a)

y(t) = Cy(t)x(t) +Dyu(t)u(t) +Dyw(t)(S ◦ (I −DzwS)−1)[Cz(t)x(t) +Dzu(t)u(t)].

(2.6b)

For a given L and S, we denote the system defined in Figure 2.3 as (L~S). This,

along with Figure 2.3, Equations (2.4), Equations (2.5), and Equations (2.6) are several

ways to represent the same interconnection of L and S.

The expression of models in the LFT form is useful because it lets us treat model

sets having a wide diversity of structures under a common framework. Conversely it allows

us to devise system identification methods which can be applied to a large class of problems

with their own unique types of structure, once the problem has been cast as an LFT. This

is because it separates model components into linear and static which can then be treated

differently, taking advantage of the properties of linearity and staticness respectively.

The first question of interest is, how general a class of models can be represented

as an interconnection of a linear and a static part? The short answer is that in fact any

discrete-time state-space system can be written like this. Because, we can rewrite the

general system equations (2.1) in the following way.












x(t+ 1)

y(t)

z1(t)

z2(t)

z3(t)













=













0 0 0 Inx 0

0 0 0 0 Iny

Inx 0 0 0 0

0 Inu 0 0 0

0 0 1 0 0













︸ ︷︷ ︸

L













x(t)

u(t)

t

w1(t)

w2(t)













, (2.7a)

and 


w1(t)

w2(t)



 =




f(z1(t), z2(t), z3(t))

h(z1(t), z2(t), z3(t))





︸ ︷︷ ︸

S

. (2.7b)



24

The L and S pointed out have the required features: L is linear (dynamic, and indeed time-

invariant), and S is static. Notice that in this representation, all of the information that

defines the system is contained in S. (Here we need to make time an explicit input signal, in

order that the lower block is in fact a static function of its inputs. Since time is presumably

known, this presents no loss of generality. When f and h do not depend explicitly on time,

and even sometimes when they do (by using an LTV L), it is not necessary to consider time

as an input.)

Next consider the mass-spring system in Example 2.1, and how it might be rear-

ranged into an LFT of a linear and a static system. Consider the system equations (2.2)

and (2.3) for this model, for some choice of T,m1,m2, c1, k1(·), k2(·), and f2(·). As we just

saw, one way to do it is to define L and S as in (2.7a) and (2.7b), where it is clear from the

system equations what are the appropriate f and h to use.

However there are other ways to put the mass-spring model into the LFT form. A

natural choice is to pull out only the individual nonlinear components of the dynamic system

into S. To do this, in the system equations (2.2) and(2.3) we look to replace any nonlinear

parts by signals defined as static (nonlinear) functions composed with linear functions of

the state and inputs. For instance the signal k1(x1 − x2) is a static function of x1 − x2. L
will then be defined so that the linear combinations of states/inputs are outputs, and S is

composed of the static functions. The result is something like













x(t+ 1)

y(t)

z1(t)

z2(t)

z3(t)













=





















1 0 T 0 0 0 0 0 0

0 1 0 T 0 0 0 0 0

0 0 1 − T
m1

0 T
m1

0 − T
m1

0 0

0 0 0 1 0 0 T
m2

− T
m2

− T
m2

0 1 0 0 0 1 0 0 0

1 −1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0





















︸ ︷︷ ︸

L
















x(t)

u(t)

e(t)

w1(t)

w2(t)

w3(t)
















, (2.8a)

and 





w1

w2

w3







=







k1(z1)

k2(z2)

f2(z3)







︸ ︷︷ ︸

S(z1,z2,z3)

(2.8b)



25

This representation is in some sense more compact than the LFT for the general

state-space system. There are fewer signals interconnecting the linear and static parts. More

of the information is contained in L, and S, made up of the component nonlinearities of the

model equations, is smaller in the sense that its these components have fewer inputs. The

input/output dimensions of L and S has a direct effect on the size of the algorithms which

are to come, and on a more fundamental level determines the dimension of the space we’re

searching over, that is the dimension of the model set. This is an important consideration.

Recall in Example 2.1 that the system identification goal was to identify suitable

functions k1(·), k2(·), and f2(·). In this latter LFT representation of the models considered

there, these three unknown functions appear in the static block S. It is precisely to treat this

type of situation that we are interested in developing new methods for system identification.

2.4 Problem Statement

Now we are ready to describe the types of system identification questions that

are the focus of much of this dissertation, and give a general formulation for the prob-

lems we consider. In short, we attack the problem of identifying unknown static nonlinear

components in a model.

We seek to identify discrete-time nonlinear state-space models. The measured

inputs and outputs of the data-generating system are represented by u and y in the model,

respectively. Together these represent the empirical input-output data available for the

system identification task. Additionally a model may contain an unmeasured stochastic

disturbance input e which can account for inexact and/or incomplete measurements, and

mismatch between the model set and the physical system.

Further, we work with models that are in the LFT form described in Section 2.3.

With the additional input e shown explicitly, the block diagram for such a model is shown

in Figure 2.4.

We consider the situation where the linear part is known and the static part is

to be identified. To be more exact, we consider model sets that are generated by the

interconnection of some fixed linear system with all static operators that are consistent

with a desired structure. We might express this as

M = {(L ~ S) : S has the required structure}.
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Figure 2.4: Canonical model set

The task here is to find the Ŝ from this set which is optimal in terms of the identification

criterion.

In doing this the interconnection signals z and w may or may not be available,

that is, they may or may not be part of the output or input vectors y and u. Of course to

the extent the input and output signals of S are known this makes the task of identifying

S easier, but we try not to assume anything here.

Staticness is one property we obviously require the identified S to have. Other

constraints arise from a priori information or desired characteristics of the identified model.

These can reflect physical insight into a particular process, or experiential knowledge about

the elements needed for a model to be a good representation of some process or system. In

the common case of working from a set of state-space equations obtained from modeling

and rearranging this into the LFT form, structure and knowledge contained in the former

is reflected in the latter.

Four specific kinds of structure that are commonly seen are the following.

1. S is block-diagonal, by which we mean that certain outputs do not depend on certain

inputs. For instance a two-input, two-output S may be composed of two single-input,

single-output functions:

S(z1, z2) =




S1(z1)

S2(z2)



 .

Here S1 does not depend on z2, and S2 does not depend on z1.

2. Some parts of S are known, or partially known, or known to within some uncertainty

bounds.

3. Some elements of S, although unknown, may be known to be equal to, or related in

certain other ways to, other elements of S. For example a given nonlinearity may be
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repeated twice. Or, one function might be the derivative of another.

4. S may be required to have certain smoothness properties, such as Lipschitz bounds,

bounds on magnitudes of derivatives, and such.

This is the main problem we attack in this dissertation. That of identifying the

static components of these types of model sets, using the available input-output information,

and respecting any desired structure. Our methods are nonparametric in nature. We will

focus on handling some of these various types of structural constraints; some are harder

than others.

For the mass-spring example and the system ID problem described at the end of

Example 2.1 in which the three nonlinearities k1(·), k2(·), and f2(·) are unknown, we saw an

LFT form of that model, (2.8), in which the parameters of the linear system are considered

to be known and the elements of S are the ones to be identified. Here S has a block-diagonal

structure; S1 depends only on the first input to S, S2 only on the second, and S3 only on

the third. In the case that k1 = k2, then there also is a nonlinearity which is repeated.

Thus this example fits naturally into the problem formulation with this choice of model set.

In a sense the problem formulation is very general. In the LFT (2.7) for the

general discrete-time system, the linear part is known, and the state transition and readout

functions which determine the system are located in S. So for any discrete-time system,

there is a model set in this formulation of linear part and static part, with the linear part

known, which contains that system, and using this model set we can hope to identify it.

For instance we could also formulate the identification problem for the mass-spring

example in this way. Then we would be identifying static functions f and h such that the

LFT (2.7) is a good model. In doing this we lose the structure and/or apriori information

we gained from modeling, and the size of the static functions we need to identify (their input

and output dimensions) grows. In the compact representation (2.8), the model set has three

single-input nonlinearities to identify. But in (2.7) the model set has two nonlinearities with

six inputs each (we don’t need to use t as an input for this example). In general it is a vastly

more challenging task to identify, or even represent in a computer, a function whose domain

is six-dimensional, than one with one input. And indeed for our methods, the smaller the

input and output dimensions of the static functions we are identifying, the better they work,

and the more computationally tractable they are.

The bottom line is, the choice of LFT representation for a given identification
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problem is nonunique. For a given structured model set, in general there are many struc-

tured LFT model sets which contain it. The choice of which one to use has important

implications for how well things are going to work out. If we choose one that is larger than

the “natural” model set then we may lose structure and/or information, and in general the

size of the identification problem grows. On the other hand, the choice is constrained by

available methods, which may not apply to all structured LFT model sets. These issues

have important implications for the generality and limitations of our methods.
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Chapter 3

Elements

3.1 Approach

Working toward solving the problem outlined in Section 2.4, in which the goal is

to identify the unknown static mappings of S, suppose we conduct an experiment of length

L during which we record u[1,L] and y[1,L]. Assuming that the data-generating system

has the structure of Figure 2.3, it makes sense to talk about the signals z and w that

were, respectively, the inputs and outputs of the operator S during the experiment. If we

somehow had access to z[1,L] and w[1,L] then this of course provides information about S.

More specifically for each t, the pair (z(t), w(t)) is an element of the graph of the function.

Recall the graph of a function f : D → R is the set {(x, f(x)) : x ∈ D}. In a sense the set of

points{(z(t), w(t))}L
t=1 is the most basic information about S contained in the experimental

data. This set is where the function was sampled during the experiment.

For example consider the following two signals which are a sequence of inputs

(z(t)) and the corresponding sequence of outputs (w(t)) = (S(z(t))) for a particular SISO

operator.

z versus t w versus t

0 50 100
−1

−0.5

0

0.5

1

time

z

0 50 100
−15

−10

−5

0

5

10

time

w
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For these signals, the scatter plot of the input-output pairs looks like

scatter plot: {(w(t), z(t))}

−1 −0.5 0 0.5 1
−15

−10

−5

0

5

10

z
w

Most of us will look at this set of points and feel confident we have a good understanding

of S, at least over the interval [−1, 1].

In reality, since we usually work with functions defined on uncountable domains,

this partial graph, being a finite number of points, is a rather small subset of the entire

graph. To infer something about the rest of it involves assumptions about the proper-

ties and intersample behavior of S, e.g. smoothness properties. The points can be further

interpolated or fitted to form an estimate of the entire function for instance by linear inter-

polation, construction of a spline curve, or a best polynomial fit. Smoothness assumptions

can then allow us to bound the mismatch between the estimate and the actual function.

Intuitively speaking, in this example it seems pretty clear what is going on without the

need to explicitly think about a procedure for extending the graph between or beyond the

samples, due to our native preference for smooth functions.

In any case the problem reduces to two successive steps: the first of determining

this partial graph of the function and forming the scatter plot, and the second of using

these points to form an estimate of the relation or function contained therein. The second

step of fitting a function to a set of points is a common engineering task. However the task

of estimating the scatter plot is more novel, and this is what we address.

The challenge is that we do not in general get to choose which signals are accessible

or easy to measure, and since the static functions we’re interested in are subcomponents

of the larger system whose inputs and outputs we measure, their particular inputs and/or

outputs may not be available. Since we would like an identification method that doesn’t

depend on these signals being known or measured, for any unknown or unmeasured parts

of z[1,L] and w[1,L], we estimate the values of those signals that were realized during the

experiment. In doing so we form an estimate for a portion of S’s graph. The criteria for

choosing those estimates is based on the available input-output data from the larger system,
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along with other knowledge and intuition about the system and unknown signals involved

in the problem. The goal of course is to achieve on average the best estimates possible and

therefore the most accurate picture of S.

Looking at the canonical candidate model set of Figure 2.4, we consider the situ-

ation that part or all of the signals e, w, z and initial condition x1 may be unknown for a

given experiment. The probability of different realizations of e and x1 affect what z and w

are likely to have been, and so the approach is to estimate all of the unknown portions of

these signals.

Perhaps the most evident information we have is the input-output data. The linear

system L defines a relationship between the signals u, e, w, y, z, and the system’s initial

condition. If L is assumed to be known then we have a set of linear equality constraints

among these signals. Some of the elements are known or measured. In estimating the

remaining unknown elements we will require that they are consistent with the linear system

and experiment data. This begins to narrow down the choices for unknown inputs and

outputs of S. A more detailed discussion of this constraint and efficient ways to handle it

is given in Section 3.2.

Another source of constraints and criteria comes from assumptions about S and

properties that we require an identified representation of it to possess. These criteria guide

the estimates of the partial graph of S. Foremost among these properties is that S is a static

operator with some reasonable smoothness; the estimates for (z, w) should be congruous

with these and there are various ways to enforce this. If S has input-output structure it

is important to take that into account. It is also possible to take advantage of knowledge

of elements that are repeated or related or have known smoothness properties. Taken

together, these considerations can be applied in various ways to rule out or penalize various

combinations of signal estimates. The issue of analyzing if signals are compatible with a

static operator, as well as some of these other constraints on S, is the focus of Section 3.3.

A third important source of constraints on and/or fitness criteria for the estimates

are known or assumed statistical properties of the disturbance signal e such as its mean and

variance, autocovariance and spectrum, and correlation with other signals (or lack thereof).

Most fundamentally, we would like any estimate for e to be a likely sample path according

to the assumed stochastic model. It should be consistent with probabilistic assumptions.

By limiting the realizations of the noise that will be considered or preferring some to others,

this limits the estimates for z and w to be considered or makes some more preferred than
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others, via other constraints and criteria that relate e to z and w. This is covered in Section

3.4.

These are the three main criteria that we consider, but we don’t exclude other

possibilities that might improve the estimates, especially if they are easy to incorporate.

We will be estimating directly some of the signals involved in the block diagram of Figure 2.3,

that is the decision variables in our optimization problems are essentially these sequences of

numbers. To the extent that a particular criteria can be expressed directly in terms of these

signals, the more naturally it will fit into such an optimization problem. Some examples

of easily-incorporated constraints are bounds on maximum magnitude of a signal, or total

energy content.

To summarize, the goal is to search for “good” estimates of the signals we’re

interested in, namely the unknown inputs and outputs of S. In view of the diverse types of

a priori information and model structure specifications, there is a wide variety of constraints

and criteria that might be used to guide us in searching for good estimates. It is natural

to formulate various optimization problems to capture these criteria and locate the best

estimates. A generic form of the type of optimization problem we expect to formulate is

minimize
x∈Rn

V (x)

subject to fi(x) ≤ 0 i = 1..p

gi(x) = 0 i = 1..r

(3.1)

The decision variables x include unknown parts of z and w as well as other unknowns and

degrees of freedom in the problem, such as the noise signal e and initial conditions x1.

The fi(·) and gi(·) represent inequality and equality constraints respectively and V (x) is an

objective function which judges the quality of a candidate estimate. The constraints and

objective are derived from the basic criteria just described:

1. the linear system constraints are satisfied

2. z and w are compatible with a static operator which has the correct structure and

satisfies other apriori assumptions

3. e is consistent with stochastic assumptions

4. other.

To formulate an optimization problem is one thing but to actually be able to solve

it is another. Ideally we could assemble optimizations which accurately reflect the problems

we want to solve, which use the constraints and criteria we think are most natural. But to
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get solutions we have to work within the constraint of what is currently possible, in terms

of computational power and solution methods. These types of questions are especially im-

portant in light of the large parameter space being searched—the number of scalar decision

variables will be roughly an integer multiple of the data length, which is often necessarily

large. We often need to compromise and settle for criteria that lend themselves to com-

putational tractability. Therefore we look to express the various criteria and constraints

discussed above in ways that enable us to apply specific favorable optimization frameworks

and algorithms, and we look to simplify the problem whenever possible.

Linear programming (LP) and convex quadratic methods (such as least squares)

are classes of optimization problems with well-known solution algorithms that work well in

practice with large decision vectors. Semidefinite programming (SDP; also known as linear

matrix inequality problems) handles more general problem formulations and includes LP

and least squares. Relatively large problem sizes are also possible here. SDP algorithm

development is an active area of research, especially in terms of exploiting the structure of

particular semidefinite problems [41]. These classes of problems are considered, along with

the more general class of convex programming (CP), and sometimes in combination with

more ad-hoc procedures. A main question is, given a particular framework such as one of

these, is it possible to include these criteria/constraints in that framework. Much of the

work in this dissertation is focused on these issues.

As discussed in Chapter 1, although the distinction between parametric and non-

parametric methods is somewhat fuzzy, the approach we are suggesting is most naturally

classified as nonparametric. True, we estimate a finite-length discrete time signal, which

is a finite set of parameters. However the underlying goal is to estimate a function. Also,

the number of parameters is dependent on the length of the data set and is not a defined

property of the model set. As the experiment grows, the number of parameters used to esti-

mate S grows, which allows that the estimate becomes more and more descriptive. Lastly,

the parameters we estimate do not have an interpretation as some intrinsic property of the

data-generating system, rather they are a property of the experiment.

The next three sections cover the three main elements of our estimation procedure

in more detail, namely linear system constraints, staticness criteria, and stochastic criteria.

We propose and discuss several quantitative measures that capture various notions of the

fitness of signal estimates, keeping in mind that we intend to later use versions of these

measures within specific optimization frameworks. With respect to this each has strong
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and weak points which will be explored in later analysis and examples.

3.2 Linear System Constraints

As described in the previous section, our approach is to perform experiments and

then estimate the unknown signals of interest, in an optimization setting. We only consider

estimates that are consistent with the known linear system L and experimental data. This

can be taken care of by adding constraints equations to the optimization formulation, and

choosing a solver that can perform the constrained optimization.

A more attractive option is to compute an explicit parametrization of this con-

straint set’s feasible set and reformulate the problem in terms of the free variables of the

parametrization, rather than describing the set implicitly with constraint equations. This

can work especially well with linear constraints in the setting of convex programming. It

eliminates the constraint equations and reduces the number of decision variables, making for

an easier optimization. In the present situation this is important, due to the large number

of constraint equations and variables involved.

Since we’re working in a discrete-time setting over a finite time interval, the con-

straints involved take the form of a finite number of linear equations among a finite number

of unknowns. This can be written as a matrix equation, and the parametrization of the solu-

tions to this equation can be computed using standard matrix operations. This approach is

described in the next section. However for long enough data records this becomes infeasible

in practice, due to difficulties associated with unstable operators and sheer problem size.

Later sections develop alternative methods to represent and compute the parametrization

which take advantage of the special dynamic-linear-system structure of these constraints in

order to derive computations which are more efficient and overcome these problems.

3.2.1 Parametrization of the Feasible Set of the Linear System Constraint

The linear system constraints between the various signals defined in the model

structure of Figure 2.3 is shown pictorially in Figure 3.1 (which is just Figure 2.3, minus

the static function block). Let the following be a state space representation of L
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Figure 3.1: Linear system constraints

x(n+ 1) = Ax(n) + Buu(n) + Bee(n) +Bww(n) (3.2a)

y(n) = Cyx(n) +Dyuu(n) +Dyee(n) +Dyww(n) (3.2b)

z(n) = Czx(n) +Dzuu(n) +Dzee(n) +Dzww(n), (3.2c)

These equations, with n ranging from 1 to L, define the output vectors y[1,L] ∈ RnyL and

z[1,L] ∈ RnzL as a linear function of the vector (x1, u[1,L], e[1,L], w[1,L]) ∈ Rnx × RnuL ×
RneL × RnwL, where x1 is the state at time n = 1. Since we’re working in a discrete-time

setting over a finite time interval, this dependence can be written out in terms of matrices

as

y[1,L] = Tyx1x1 + Tyuu[1,L] + Tyee[1,L] + Tyww[1,L] (3.3a)

z[1,L] = Tzx1x1 + Tzuu[1,L] + Tzee[1,L] + Tzww[1,L]. (3.3b)

Here e.g. Tyu is the block Toeplitz matrix

Tyu :=













Dyu 0 0 · · · 0

CyBu Dyu 0 · · · 0

CyABu CyBu Dyu · · · 0
...

...
...

. . .
...

CyA
L−2Bu CyA

L−3Bu CyA
L−4Bu · · · Dyu













(3.4)

which is the matrix representation of the the zero-state response of Ly to u. Similarly

Tye, Tyw, Tzu, Tze, and Tzw are zero-state responses, while Tyx1 and Tzx1 bookkeep the re-

sponse of the system to initial conditions, for instance

Tyx1 :=













Cy

CyA

CyA
2

...

CyA
L−1













. (3.5)
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We could just as easily handle an LTV L by defining the T∗ appropriately.

As discussed in Section 3.1, we require that any estimates for e, w, z, and x1 are

consistent with L and the input-output data. That is, they satisfy equations (3.3a) and

(3.3b). Estimates that do so are called feasible for the linear system constraints. As the

solution set of a system of linear equations the feasible set is an affine subspace of the

parameter space Rnx ×RneL ×RnwL ×RnzL. The optimization (3.1) can be thought of as

checking each point in this set

{
(x1, e[1,L], w[1,L], z[1,L]) ⊆ Rnx × RneL × RnwL × RnzL : (3.3a) and (3.3b) hold

}

for how well it fits the rest of our prior knowledge and assumptions, and choosing the one

that is most consistent.

We assume that for a given data record, the system of equations (3.2a) and (3.2b)

is consistent, which is to say the system is underdetermined, and there is at least one choice

for the unknown quantities that satisfies the linear system constraints. In this case we look

to other criteria (staticness, stochastics, etc) to select a good one.

One situation where a solution is guaranteed to exist regardless of the input-output

data is that each of the ny measurements is noisy and this is modeled as an unknown output

error added to each measurement. In this case for any input-output data record (u, y) there

are many solutions (x1, e, w, z) to the linear system. This is because Dye is full rank, and

so DyeD
T
ye is invertible, which in turn means TyeT

T
ye is invertible. Then for any choice of

w[1,L] and x1 we can solve (3.3a) for e[1,L]; one possibility is the least-squares solution for

an underdetermined system of equations:

e[1,L] = T T
ye(TyeT

T
ye)

−1(y[1,L] − Tyuu[1,L] − Tyww[1,L] − Tyx1x1)

Then choose z[1,L] according to (3.3b), and this choice of (x1, e[1,L], w[1,L], z[1,L]) satisfies

the linear system. In effect, we can attribute any discrepancy in the output y to noise if

necessary.

It would be straightforward at this point, given L and input-output data, to write

out the constraint equations (3.2a) and (3.2b) and pass them, along with additional criteria

(as alluded to in Section 3.1) to a routine which computes the optimal estimates. However

due to the nature of the problem this is typically a very large number of equations, and

a very large number of free variables. The optimization quickly becomes very challenging
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when dealing with systems with multiple inputs and outputs, many unknowns, and long

data records.

A common practice is to eliminate some or all of the equality constraints before

passing the optimization problem on to a solver. A little preprocessing beforehand can

result in an formulation which is smaller and more easily solved, the solution is equivalent

to a solution of the original problem [41]. Looking at the generic problem (3.1), suppose

that we can find a parametrization of the solution set of the equality constraints. That is

we find a function χ : Rf → Rn such that

{x ∈ Rn : gi(x) = 0, i = 1..r} = {K(f) : f ∈ Rκ}.

Then solving (3.1) is equivalent to solving

minimize
f∈Rκ

V (K(f))

subject to fi(K(f)) ≤ 0 i = 1..p
, (3.6)

in the sense that if f is optimal for (3.6) then x = K(f) is optimal for (3.1), and if x is

optimal for (3.1) then there exists an f , optimal for (3.6), with x = K(f). The hope is

that, with elimination of equality constraints and a possible reduction in the number of free

variables, this is a easier problem to solve than the original.

This can work especially well when the constraints are linear. In general one

can parametrize the solution set of a system of linear equations as a particular solution,

plus anything in the nullspace of the linear operator. To be concrete suppose the equality

constraints are represented by a system of linear equations

Ax = b,

with A ∈ Rm×n and b ∈ Rm. Suppose that this constraint is feasible and there is at least

one solution, i.e. b ∈ R(A). Let x0 be a particular solution, and K ∈ Rn×p such that

R(K) = N (A). Then

{x ∈ Rn : Ax = b} = {x0 +Kf : f ∈ Rp}. (3.7)

The rank of K is necessarily equal to κ := dimN (A) = n− rank(A), the nullity of A. Thus

if K ∈ Rn×κ then K has a trivial nullspace, and for each solution x there is exactly one

vector f ∈ Rκ such that x = x0 +Kf , and so this is a sort of minimal parametrization of

the nullspace of A.
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In this case the original problem is transformed to

minimize
f∈Rκ

V (x0 +Kf)

subject to fi(x
0 +Kf) ≤ 0 i = 1..p

, (3.8)

Here the equality constraints are eliminated. Typically the set of decision variables that are

consistent with the equality constraints are a lower-dimensional manifold of the full decision

variable space, i.e. κ < n; in fact κ− n = rank(A).

One potential drawback to doing this is that the structure of the transformed

cost and constraint functions may be less convenient for the optimization procedure to

handle. In some cases it can be more efficient to leave the problem in its original form,

even with a greater number of constraints and decision variables, because the objective and

constraint functions have an advantageous structure which the optimization procedure can

take advantage of. For our purposes it is important that if g(x) : Rn → Rp is convex

in x, then h(f) = g(x0 + Kf) is convex in f . That is, the composition of a convex with

an affine function is still convex. We can replace “convex” with “affine” or “quadratic”

and the statement is still true. Also, LMIs remain LMIs. Since the unknown signals and

initial condition have been parametrized as affine functions of the new decision variable,

any problem that was convex (linear, quadratic, LMI) in x is still convex (linear, quadratic,

LMI) in f after elimination of the equality constraints.

Apply these ideas to the linear system constraints. First note that for any choice

of e, w, and x1 which satisfies (3.3a), there is always a choice of z such that (3.3b) is also

true (dropping the [1,L] subscript for now). Thus we should consider the set of e, w, and x1

such that the y equation holds, and parametrize the unknown z accordingly. Rewrite the y

equation as

[

Tyx1 Tye Tyw

]







x1

e

w







= y − Tyuu. (3.9)

Here the right-hand side is a known quantity. Let (x0
1, e

0, w0) be a particular solution of

this, κ the dimension of the nullspace of
[

Tyx1 Tye Tyw

]

, and K ∈ R(nx+neL+nwL)×κ a

matrix whose range space is equal to the nullspace of this matrix, i.e. K has independent
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columns and
[

Tyx1 Tye Tyw

]

K = 0. Partition K conformably as

K =







Kx

Ke

Kw






.

Apparently we can parametrize the set of (x1, e, w) which are consistent with the linear

system and input-output data as













x1

e

w







: (3.3a) holds







=













x0
1 +Kxf

e0 +Kef

w0 +Kwf







: f ∈ Rκ







. (3.10)

The signal zf that is consistent with the linear system, input-output data, and particular

choice of f is

zf = Tzx1x
f
1 + Tzuu+ Tzee

f + Tzww
f

= Tzx1(x
0
1 +Kxf) + Tzuu+ Tze(e

0 +Kef) + Tzw(w0 +Kwf)

= (Tzx1x
0
1 + Tzuu+ Tzee

0 + Tzww
0)

︸ ︷︷ ︸

z0

+
[

Tzx1Kx TzeKe TzwKw

]

︸ ︷︷ ︸

Kz

f

= z0 +Kzf, (3.11)

defining z0 and Kz as indicated.

In the sequel f denotes the decision variables. The unknown signals and/or initial

condition are parametrized in terms of f as

xf
1 = x0

1 +Kxf (3.12a)

ef = e0 +Kef (3.12b)

wf = w0 +Kwf (3.12c)

zf = z0 +Kzf (3.12d)

The linear equality constraints are “built-in” to this parametrization. The size of the

decision vector f is in general smaller than, and never larger than, the original decision

vector involving the unknown parts of (x1, e, w, z).

For the solution parametrization it’s necessary to compute a particular solution

of a certain system of equations, as well as a basis for the nullspace of a particular linear
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operator. When working with matrix representations of the operators in question, solutions

for these problems are readily available.

In general there are many solutions of (3.9) for the unknown parts of (x1, e, w).

One choice is the minimum-norm solution, which is an optimal point of the minimization

minimize ‖(x1, e, w)‖2

subject to
[

Tyx1 Tye Tyw

]







x1

e

w







= y − Tyuu.
(3.13)

This is a least-squares problem, and solvers with good numerical properties are available.

One way to characterize the nullspace of a matrix and find basis vectors which

span it is to compute its singular value decomposition (SVD). For background on the SVD

see e.g. [30]. Suppose A ∈ Rm×n with singular value decomposition

A = USV ∗

= U




Σ 0

0 0








V ∗

1

V ∗
2





such that U ∈ Cm×m, S ∈ Rm×n, and V ∈ Cn×n with U and V unitary. Let r be the

number of nonzero singular values, which is equal to the rank of A, and Σ is the r × r

diagonal matrix of positive singular values. Let vk be the k’th column of V . Then Avk is

nonzero for 1 ≤ k ≤ r and zero for r < k ≤ n, and thus N (A) has dimension n− r, and is

spanned by the last n− r columns of V . Letting V1 be the first r columns of V and V2 the

remaining, then the (independent) columns of V2 span the nullspace of A:

Ker(A) = span(V2). (3.14)

We’ve been using matrices to represent discrete-time linear systems over finite

lengths of time in part because they offer a nice concrete way to visualize what’s going on.

It’s straightforward to see how to modify the procedures to handle time-varying systems,

multiple experiments, various types of initial and boundary conditions, measurements that

come at irregular sampling intervals, and other linear dependences of the output of the

system on unknown parameters in a way that doesn’t quite fit into the linear dynamic

system framework we’ve been discussing. The parametrization of the feasible set of the

linear equality constraints involves computing a particular solution, which may be done
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via a least-squares or QR decomposition, and a basis for the nullspace of that operator,

which can be found by computing a singular value decomposition. The sizes of the matrices

involved in these computations is linear in the number inputs and outputs, as well as the

time span considered. With currently available computers and algorithms, manipulation of

large matrices is a viable solution method for many systems and quite large data records.

But for computational and numerical reasons it is not always convenient or even

possible to deal with matrices. For one, when the length L of the data record is large,

and when dealing with systems with many inputs and outputs, the matrices can quickly

become too large to store, or to be able to perform computations such as SVD or QR

decompositions.

Another potential problem is that if L is an unstable system then the Markov

parameters such as CAkB in the matrix representations can grow quickly with L. This

presents issues with storing large numbers on a machine with finite word length. As well,

Toeplitz matrices for unstable systems are typically ill-conditioned, once again causing

problems for matrix operations one may attempt to perform on them.

It’s useful to be able to handle unstable L, even when the system to be identified is

stable. The canonical separation of the system into linear and static parts as in Figure 2.3

can be an artificial division which results in component systems with properties different

from the aggregate system. In particular even if the LFT is stable, L might unstable, being

stabilized by the feedback through S.

Finally, a system with nonminimum phase could also potentially pose a problem

in computing particular solutions. We’re solving a sort of inversion problem here, since

(e, w) ∼ L−1(y), and the inverse of a non-minimum phase system is unstable. Using the

least-norm particular solution choice as described above regularizes the problem, and so

usually this isn’t a big issue.

A linear dynamic system L defines an operator which maps an input signal u along

with initial condition to an output signal y. One thing lost when thinking of this operator

as a big matrix equation is the efficient recursive computation of the mapping. The matrix

multiplication involves computing the outputs y(t), for each time t, as a linear combination

of the values of the inputs u(t), t = 1..L. Hence to compute the output u(t), t = 1..L

requires O(L2) operations. On the other hand for a causal system with a state description,

the output and state at time t depend only on the input and state at time t − 1, and the

output can be calculated recursively (over t) in only O(L) operations.
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Since in this case the operator in question is indeed derived from a linear dynamic

system, attractive alternatives exist for computing a particular solution and a basis of the

nullspace. It is possible to take advantage of the recursive structure of the dynamic system

equations to derive computations which are efficient in terms of computation and storage.

Care is needed so that computations are also well-behaved; in particular any recursive

operations we use in the solution process should be stable. In the next sections we consider

representations of and methods for computing the data x0
1,Kx, etc, in Equations (3.12).

We want to handle a general configuration of unknown quantities in x1, e, w, and z.

The next sections discuss how to efficiently compute particular solutions and a

basis for the nullspace of the linear equality constraints. It’s not essential to have read

these in order to understand later sections. The short version of the story is that there’s

an efficient way to compute the min-norm particular solutions (3.13), and it’s easy to find

stable linear dynamic system representations of the operators K∗ in (3.12a)–(3.12d) that

characterize the nullspace of the linear equality constraints. There are a few assumptions

about L that are used; mostly they make the derivations easier, and could be relaxed

with some additional work. When working directly with matrices these assumptions aren’t

needed.

3.2.2 Linear Dynamic Systems and Operators They Define

This section mostly introduces notation and makes explicit what we mean by

certain ideas and expressions used in the following two sections.

Given two linear operators, L1 : Rn1 → Rm and L2 : Rn2 → Rm, by the horizontal

concatenation [L1 L2] we mean the operator L : Rn1 × Rn2 → Rm with action

L(x1, x2) = L1x1 + L2x2,

and borrowing from matrix notation we express L(x1, x2) as

[

L1 L2

]




x1

x2



 .

Going the other way we can partition a linear operator L : Rn1 × Rn2 → Rm into two

operators according to its first n1 and last n2 inputs. Define

L1 : Rn1 → Rm, x1 7→ L(x1, 0)

L2 : Rn2 → Rm, x2 7→ L(0, x2),
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and so

L1(x1) + L2(x2) = L(x1, x2).

Finally, given two linear operators L1 : Rn → Rm1 and L2 : Rn → Rm2 , by the vertical

concatenation




L1

L2



 we mean the operator L : Rn → Rm1 × Rm2 with action

L(x) = (L1x, L2x) .

Roughly speaking, a linear dynamic system Lmaps an input signal u into an output

signal y, and we write y = Lu to symbolize this. But to be precise there are a number of

different operators that can be associated with L, i.e. a number of ways to map one vector

of numbers into another. Mainly we are concerned with distinguishing between

• the zero-state, or forced, response which maps an input vector u(t), t = 1..N to an

output vector y(t), t = 1..N ,

• the zero-input, or free, response which maps an initial condition x1 to output vector

y(t), t = 1..N , and

• the full response which maps an initial condition x1 plus input vector to output vector

y(t), t = 1..N .

Other possibilities exist, for example an operator associated with L that maps an initial

condition plus input vector to a vector of outputs along with a vector of states x(t), t = 1..N ,

or maybe one that maps an input vector to a final state. Mainly the distinctions come about

as a result of using different subsets of the possible things to consider as inputs and outputs

of the system. Being clear about which specific operator is being discussed is important in

the following two sections, when talking notions such as the “inverse of L” and “adjoint of

L”.

Since we’re working in discrete-time and with finite time spans, all linear operators

that we consider have matrix representations. Some notation for the matrix representation

of these three particular operators is useful. This notation makes it precise which of the

possible operators corresponding to a given linear dynamic by defining its matrix represen-

tation, while bookkeeping the state-space data of the dynamic system it’s derived from.
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Define




Ak Bk

Ck Dk





z-s

:=












D1 0 0 0 0

C2B1 D2 0 0 0

C3A2B1 C3B2 D3 0 0

C4A3A2B1 C4A3B2 C4B3 D4 0

. . .
..
.

CLAL−1..A2B1 CLAL−1..A3B2 CLAL−1..A4B3 CLAL−1..A5B4 . . . DL












(3.15)

This is shorthand for the matrix representation of the forced response of a discrete-time

LTV causal dynamic system L with state-space data (Ak, Bk, Ck, Dk), which maps an input

vector to the zero-state response as

y[1,L]z-s =




Ak Bk

Ck Dk





z-s

u[1,L]. (3.16)

For LTI systems this becomes the usual familiar toeplitz matrix




A B

C D





z-s

=










D 0 0 0

CB D 0 0

CAB CB D 0

. . .
.
.
.

CAL−2B CAL−3B CAL−4B . . . D










. (3.17)

At times we use this notation when we want to be clear about which operator derived from

the dynamic system we’re talking about, in this case the zero-state response. Next define




Ak

Ck



 :=




Ak Bk

Ck Dk





z-i

:=












C1

C2A1

C3A2A1

C4A3A2A1

..

.

CLAL−1..A1












. (3.18)

This is shorthand for the matrix representation of the zero-input response of L:

y[1,L]z-i =




Ak

Ck



x1. (3.19)
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Putting these together, the matrix representation of the full response is




Ak Bk

Ck Dk



 :=












C1 D1 0 0 0 0

C2A1 C2B1 D2 0 0 0

C3A2A1 C3A2B1 C3B2 D3 0 0

C4A3A2A1 C4A3A2B1 C4A3B2 C4B3 D4 0

. . .
.
..

CLAL−1..A1 CLAL−1..A2B1 CLAL−1..A3B2 CLAL−1..A4B3 CLAL−1..A5B4 . . . DL












,

(3.20)

and the full, forced plus free, response of L can be expressed as

y[1,L] =




Ak Bk

Ck Dk








x1

u[1,L]



 . (3.21)

Notice that 


Ak Bk

Ck Dk





z-s

=




Ak Bk

Ck Dk








0nx

ILnu



 (3.22)

and 


Ak Bk

Ck Dk





z-i

=




Ak Bk

Ck Dk








Inx

0Lnu



 (3.23)

The same notation can be used to express various compositions of these operators.

In each case the easiest way to verify these is to write out the state equations for one time

step.



Ak Bk

Ck Dk





z-s




Ek Fk

Gk Hk





z-s

u =







Ak BkGk BkHk

0 Ek Fk

Ck DkGk DkHk







z-s

u (3.24)




Ak Bk

Ck Dk





z-s




Ek

Gk



x1 =







Ak BkGk

0 Ek

Ck DkGk










0

I



x1 (3.25)




Ak Bk

Ck Dk





z-s




Ek Fk

Gk Hk








x1

u



 =







Ak BkGk BkHk

0 Ek Fk

Ck DkGk DkHk













0 0

I 0

0 I










x1

u



 (3.26)
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Ak Bk

Ck Dk












x11



Ek Fk

Gk Hk








x21

u












=







Ak BkGk BkHk

0 Ek Fk

Ck DkGk DkHk













I 0 0

0 I 0

0 0 I













x11

x21

u







(3.27)

Finally we consider state transformations. The following are identities.




Ak Bk

Ck Dk





z-s

=




TkAkT

−1
k TkBk

CkT
−1
k Dk





z-s

(3.28)




Ak

Ck



 =




TkAkT

−1
k

CkT
−1
k



T1 (3.29)




Ak Bk

Ck Dk



 =




TkAkT

−1
k TkBk

CkT
−1
k Dk








T1 0

0 I



 (3.30)

The representations in terms of the state-space (TkAkT
−1
k , TkBk, CkT

−1
k , Dk) are related to

(Ak, Bk, Ck, Dk) by the state transformation x̃k = Tkxk, with Tk invertible for all k. These

identities are useful because often, unobservable or uncontrollable dynamics are exposed

with a suitable state transformation, due to the forms of Ãk = TkAkT
−1
k , B̃k = TkBk, and

C̃k = CkT
−1
k . This can help simplify expressions. It’s necessary to remember that the initial

condition is affected by state transformation.

3.2.3 Computing a Particular Solution

In this section we discuss recursive, stable, efficient computation of the minimum-

norm solution of problems like (3.13), when the matrices represent LTV systems. This

enables us to find a particular solution of the linear dynamic system constraint for the

unknown parts of x1, e, and w.

To set the problem up, consider a system L with input u, output y, initial condition

x1, and state-space (Ak, Bk, Ck, Dk). Partition the input and initial condition into fixed

parts ū and x̄1, and free parts u and x1, respectively. Partition the state-space matrices

accordingly, defining B̄k and D̄k as containing the columns of Bk and Dk that correspond

to the fixed part of u, and Bk and Dk as containing the columns corresponding the the free

parts. For instance this means

Bkuk = B̄kūk +Bkuk and Dkuk = D̄kūk +Dkuk.
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Let nx̄1 and nx1
be the number of fixed and free components of the initial condition vector

(nx̄1 + nx1
= nx). Let M̄ the nx × nx̄1 matrix which “expands” the elements of the fixed

initial conditions x̄1 into their places in x1, and M the nx × nx1
matrix that does the same

for x1. For instance if nx = 3, the first component of the initial condition is fixed and the

last two are free, then

M̄ =







1

0

0






, M =







0 0

1 0

0 1






, and x1 = M̄x̄1 +Mx1. (3.31)

Define

Āk :=







A1M̄ k = 1

Ak k > 1
and C̄k :=







C1M̄ k = 1

Ck k > 1
(3.32)

Ak :=







A1M k = 1

Ak k > 1
and Ck :=







C1M k = 1

Ck k > 1
(3.33)

and similarly for C̄k and Ck. These definitions are for notational convenience in dealing

with fixed vs free initial conditions. Note that for k > 1, Āk = Ak = Ak and C̄k = Ck = Ck.

Only the k = 1 definitions are different; Ā1 and C̄1 contain the columns of A1 and C1 that

correspond to the fixed part of the initial condition, and A1 and C1 contain the columns of

A1 and C1 that correspond to the free part of the initial condition.

With these definitions, L can be partitioned into a part L̄ that describes how

the output depends on the fixed inputs and initial conditions, and another part L for the

dependence on the free elements:

y =




Ak Bk

Ck Dc








x1

u



 (3.34)

=




Ak B̄k

Ck D̄k








M̄x̄1

ū



+




Ak Bk

Ck Dk








Mx1

u



 (3.35)

=




Āk B̄k

C̄k D̄k





︸ ︷︷ ︸

=:L̄




x̄1

ū



+




Ak Bk

Ck Dk





︸ ︷︷ ︸

=:L




x1

u



 (3.36)
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In this section the following minimum-norm problem is considered.

minimize
x1,u

∥
∥
∥
∥
∥
∥




x1

u





∥
∥
∥
∥
∥
∥

2

subject to y = L̄




x̄1

ū



+ L




x1

u



 .

(3.37)

Note that (3.13) has this form, and so in presenting a solution method for this problem, it

can be readily applied to compute a feasible solution of the linear system equality constraint.

The next section shows how to find a basis for the nullspace of L.

The next four results are useful.

Theorem 3.1 (solution of minimum-norm problem) Let L be an n×m matrix such

that LL∗ is invertible. Then for any y the system of equations Lx = y has a feasible solution

x, and

min
x

‖x‖2 subject to Lx = y (3.38)

has a unique optimal point

xmn = L∗(LL∗)−1y.

These are the so-called normal equations for this problem. For a proof and more discussion

about this and other forms of the projection problem, see Luenberger [28].

Theorem 3.2 (minimum-norm solution) Given L as in Theorem 3.1. If there exists an

invertible K such that (KL)(KL)∗ = I, then the solution of the minimum-norm problem

(3.38) is given by

xmn = (KL)∗Ky.

proof Given such a K, define Q := KL. Then starting from Theorem 3.1 we have

xmn = L∗(LL∗)−1y

= Q∗K−∗(K−1QQ∗K−∗)−1y

= Q∗K−∗K∗Ky

= (KL)∗Ky

�

The following is useful when working with adjoints of linear operators derived from

discrete-time dynamic systems.
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Theorem 3.3 (adjoint of a certain linear operator) Consider a linear operator L

whose action (x, u) 7→ y is defined by

yk = Ckx̃k +Dkuk, k = 1..L (3.39)

with x̃k defined by

x̃1 = x, (3.40)

x̃k+1 = Akx̃k +Bkuk, k = 1..L− 1 (3.41)

for some compatibly-sized matrices Ak, Bk, Ck, Dk, k = 1..L. (i.e. L is the full response of

a discrete-time LTV system with state space (Ak, Bk, Ck, Dk).)

Then the adjoint operator L∗ : ψ 7→ (χ, µ) is given by

µk = B∗
kχ̃k +D∗

kψk, k = 1..L (3.42)

χ = χ̃0, (3.43)

where χ̃k is defined by

χ̃L = 0 (3.44)

χ̃k−1 = A∗
kχ̃k + C∗

kψk, k = 1..L. (3.45)

Note that the definition of L∗ evolves backward in time. One way to see the result is to

write out the matrix associated with L as in (3.20), take its adjoint, and verify this agrees

with the matrix representation of the operator L∗ as defined. Or find another way to verify

that

〈ψ , L(x, u) 〉 = 〈 L∗ψ , (x, u) 〉 ∀ψ, x, u.

Also note that for LTI systems, if the forward recursion (3.41) is stable, i.e. A is Hurwitz,

then the backward recursion (3.45) is also stable. �

The last preliminary result is concerned with the inverse of a class of linear sys-

tems.

Theorem 3.4 (inverse of a class of linear dynamic system)

Let G be the zero-state response from time t = 1 to L of a discrete-time LTV system

with state-space (Ak, Bk, Ck, Dk), with Dk square and invertible. Then G is invertible, and

G−1 = H, where H is the zero-state response from time t = 1 to L of the discrete-time

LTV system with state-space (Ak −BkD
−1
k Ck, BkD

−1
k ,−D−1

k Ck, D
−1
k ).
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proof: G has the matrix representation

G :




Ak Bk

Ck Dk





z-s

,

and H has the matrix representation

H :




Ak −BkD

−1
k Ck BkD

−1
k

−D−1
k Ck D−1

k





z-s

.

The composition of H with G therefore has matrix representation

HG :







Ak −BkD
−1
k Ck BkD

−1
k Ck BkD

−1
k Dk

0 Ak Bk

−D−1
k Ck D−1

k Ck D−1
k Dk







z-s

(see (3.24)). Partition the state of HG as (xG, xH) and considering a state transfor-

mation 


x̃G

x̃H



 =




I −I
0 I








xG

xH



 ,

we see

HG :







Ak −BkD
−1
k Ck 0 0

0 Ak Bk

−D−1
k Ck 0 I







z-s

=




Ak −BkD

−1
k Ck 0

−D−1
k Ck I





z-s

.

The first equality is like (3.28), and the second equality comes from eliminating unob-

servable states. It is clear that the expression on the right hand side is the identity

matrix; the input has no effect on the output and the feedthrough term is identity. Or

look at (3.15). This shows that H is a left inverse of G. It can be shown to be a right

inverse in a similar way.

remark 1: A quick way to see where the state space of H comes from. The dynamic

system of G evolves according to:



xk+1

yk



 =




Ak Bk

Ck Dk








xk

uk



 . (3.46)

Since D is invertible we can algebraically manipulate this into



xk+1

uk



 =




Ak −BkD

−1
k Ck BkD

−1
k

−D−1
k Ck D−1

k








xk

yk



 , (3.47)
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and given the output yk, k = 1..l of G and using x1 = 0 since y is the zero-state response

of G, we can run the latter system to compute the input uk, k = 1..L of G.

�

A main assumption we make in this and the following section is that the “D”

matrix of L, Dk, is such that DkD
∗
k is invertible for all k. As suggested in Section 3.2.1,

this is always the case when the model includes noise on all measurements. It will be shown

that this implies LL∗ is invertible as well. In this case according to Theorem 3.1 the

min-norm solution of (3.37) is given by




x1

mn

umn



 = L∗(LL∗)−1ȳ (3.48)

where

ȳ := y − L̄




x̄1

ū



 . (3.49)

Now, given L we know how to compute L∗ and apply its operation to an input

vector in a recursive manner using Theorem 3.3. And according to Theorem 3.4 we can

represent the inverse of the zero-state response operator for a dynamic system by a recursive

operator. However we cannot actually compute (LL∗)−1 recursively since we don’t have a

convenient representation of LL∗ for doing so. We have state space representations of

L and L∗, but we don’t have a state space representation for the composition; it’s not

straightforward since L evolves forward in time while L∗ goes backward.

Also keep in mind ȳ isn’t directly known, rather it has to be computed from

knowledge of y, x̄1, ū, and L as in (3.49). In particular the operation

L̄




x̄1

ū



 ,

might be problematic as we haven’t made the assumption that L is a stable system.

But we can set things up so that we can use a solution method motivated by

Theorem 3.2, one which is possible to compute recursively, and does not require simulations
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that are potentially unstable. To this end, define

K1 :=




Ak +KkCk

T
−1/2
k Ck



 (3.50)

Ku :=




Ak +KkCk B̄k +KkD̄k

T
−1/2
k Ck T

−1/2
k D̄k





z-s

(3.51)

Ky :=




Ak +KkCk −Kk

T
−1/2
k Ck −T−1/2

k





z-s

(3.52)

where Kk and Tk are defined by the Kalman filtering equations

P1 := I (3.53)



Rk Sk

Sk
∗ Tk



 :=




Ak Bk

Ck Dk








Pk 0

0 I








Ak Bk

Ck Dk





∗

(3.54)

=




AkPkAk

∗ +BkB
∗
k AkPkCk

∗ +BkD
∗
k

(AkPkCk
∗ +BkD

∗
k)

∗ CkPkCk
∗ +DkD

∗
k



 k = 1..L (3.55)

Pk+1 := Rk − SkTk
−1Sk

∗ k = 1..L. (3.56)

Kk := −SkTk
−1 k = 1..L (3.57)

First note that DkD
∗
k is invertible by assumption i.e. DkD

∗
k � 0, which implies

that Tk = CkPkCk
∗+DkD

∗
k � 0 and is invertible as well. Therefore definitions (3.50)–(3.52)

are valid.

Toward applying Theorem 3.2, notice that Ky is invertible by Theorem 3.4. Next

it can be shown that (KyL)(KyL)∗ = I by demonstrating (KyL)(KyL)∗ψ = ψ for all ψ.
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First compute a state-space representation of the composition

Q := KyL (3.58)

=




Ak +KkCk −Kk

T
−1/2
k Ck −T−1/2

k





z-s




Ak Bk

Ck Dk



 (3.59)

=







Ak +KkCk −KkCk −KkDk

0 Ak Bk

T
−1/2
k Ck −T−1/2

k Ck −T−1/2
k Dk













0 0

I 0

0 I







(3.60)

=







Ak +KkCk 0 Bk +KkDk

0 Ak Bk

−T−1/2
k Ck 0 −T−1/2

k Dk













−I I 0

0 I 0

0 0 I













0 0

I 0

0 I







(3.61)

=




Ak +KkCk Bk +KkDk

−T−1/2
k Ck −T−1/2

k Dk



 (3.62)

where in going from the first to the second line we take advantage of the fact that the zero-

state response doesn’t depend on the A or C matrix at time t = 1 and we can substitute

anything, in going from the third to the fourth line we applied a state transformation

x̃ =




−I I

0 I



x, and in going from the fourth to the fifth we eliminated the second set of

states as they are unobservable and don’t affect the output.

Now suppose we drive the system Q by the output of Q∗ψ. Refer to Theorem 3.3

to see how Q∗ is defined. Letting u, y, x be the input, output, and state of Q, then Q evolves

according to 


xk+1

yk



 = Qk




xk

uk



 (3.63)

and letting ψ, µ, χ be the input, output, and state of Q∗, then Q∗ evolves according to



χk−1

µk



 = Q∗
k




χk

ψk



 , (3.64)

where

Qk :=




Ak +KkCk Bk +KkDk

−T−1/2
k Ck −T−1/2

k Dk



 (3.65)

as suggested by (3.62).

With this setup,
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Theorem 3.5 Given an input vector ψ, when Q is driven by the output of Q∗ψ to produce

y, then

xk = Pkχk−1 and yk = ψk, k = 1..L. (3.66)

proof First note that part of the output vector of Q∗ is χ0, which becomes the initial

condition x1 of Q. Thus x1 = P1χ0, since P1 = I.

Next, notice that

Qk =




I 0

0 T
−1/2
k








I Kk

0 −I








Ak Bk

Ck Dk





and then that

Qk




Pk 0

0 I



Q
∗

k =




I 0

0 T
−1/2
k








I Kk

0 −I








Ak Bk

Ck Dk








Pk 0

0 I








Ak Bk

Ck Dk





∗



I Kk

0 −I





∗



I 0

0 T
−1/2
k





∗

=




I 0

0 T
−1/2
k








I −SkTk

−1

0 −I








Rk Sk

Sk
∗ Tk








I −SkTk

−1

0 −I





∗



I 0

0 T
−1/2
k





∗

=




I 0

0 T
−1/2
k








Pk+1 0

0 Tk








I 0

0 T
−1/2
k





∗

=




Pk+1 0

0 I



 k = 1..L

where we used the definitions of Rk, Sk, Tk, Kk, and Pk in (3.54)–(3.53). This makes

the following easy to see. Suppose, for 1 ≤ k ≤ L, that indeed xk = Pkµk−1. Then




xk+1

yk



 = Qk




xk = Pkχk−1

µk



 = Qk




Pk 0

0 I



Q∗
k




χk

ψk



 =




Pk+1 0

0 I








χk

ψk



 . (3.67)

This completes an inductive argument which shows xk = Pkχk−1, k = 1..L, and in

the process we have shown that this implies yk = ψk, k = 1..L, also. �

This shows that (KyL)(KyL)∗ = I, and since Ky is invertible, it follows from

Theorem 3.2 that the minimum-norm solution of (3.37) is given by




x1

mn

umn



 = (KyL)∗Kyȳ. (3.68)

When working with LTI systems and assuming (A,C) is observable, the operator

(KyL)∗ in (3.68) corresponds to a stable dynamic system. First, Q as defined in in (3.62) is
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stable. This is a property of the Kalman filtering equations (3.50)–(3.52). Then, Q stable

implies Q∗ is also stable (see Theorem 3.3), and so its action can be computed in a stable

recursive way. Now it remains to compute Kyȳ.

Recall that in addition to Ky we defined a K1 and Ku in (3.50) and (3.51). By

assumption the signals y and ū are known. Observe:

K1M̄x̄1 +Kuū+Kyy =
[

K1 Ku

]




M̄ 0

0 I








x̄1

ū



+KyL̄




x̄1

ū



+KyL




x1

u



 (3.69)

= KyL




x1

u



 (3.70)

= Kyȳ, (3.71)

where in going from (3.69) to (3.70) we used that the first two terms cancel, due to:

[

K1 Ku

]




M̄ 0

0 I



 =




Ak +KkCk B̄k +KkD̄k

T
−1/2
k Ck T

−1/2
k D̄k








M̄ 0

0 I



 (3.72)

=




Āk +KkC̄k −B̄k −KkD̄k

T
−1/2
k C̄k −T−1/2

k D̄k








I 0

0 −I



 , (3.73)

and

KyL̄ =




Ak +KkCk −Kk

T
−1/2
k Ck −T−1/2

k





z-s




Āk B̄k

C̄k D̄k



 (3.74)

=




Āk +KkC̄k −B̄k −KkD̄k

T
−1/2
k C̄k −T−1/2

k D̄k








−I 0

0 I



 , (3.75)

by a development similar to that used in (3.58)–(3.62). Since K1, Ku, and Ky are stable

systems and x̄1, ū, and y are known, we are able to compute Kyȳ stably as in (3.69).

End-to-end we have:
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x1

mn

umn



 = (KyL)∗Kyȳ (3.76)

= (KyL)∗
(
K1M̄x̄1 +Kuū+Kyy

)
(3.77)

=




Ak +KkCk Bk +KkDk

−T−1/2
k Ck −T−1/2

k Dk





∗ 


Āk +KkC̄k B̄k +KkD̄k −Kk

T
−1/2
k C̄k T

−1/2
k D̄k −T−1/2

k











x̄1

ū

y







(3.78)

3.2.4 Computing a Nullspace Basis

In this section the concern is to find a basis for the nullspace of

L =




Ak Bk

Ck Dk



 . (3.79)

When this system represents the dependence of the output of L on unknown inputs and

initial conditions, this is the second step in finding a parametrization of the feasible set of

the linear equality constraints as described in Section 3.2.

By a “basis” of the nullspace, we mean an operator whose range is equal to the

nullspace of L, and whose own nullspace is the trivial nullspace.

The following 2 results are useful here.

Theorem 3.6 (nullspace basis of a finite-rank surjective linear map) Suppose L

is a finite-rank linear operator of the form

L((x, y)) := L1x+ L2y,

with L1 : Rn → Rn an invertible linear operator and L2 : Rp → Rn. Define M : Rp →
Rn+p by

M(f) := (−L−1
1 L2f, f). (3.80)

Then M is a basis for the nullspace of L, i.e.

R(M) = N (L)

and

N (M) = {0},

i.e. M is a bijection between Rp and N (L).
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proof Suppose (x, y) ∈ R(M). Then ∃f with y = f and x = −L−1
1 L2f , and so L((x, y)) =

L1(−L−1
1 L2f) + L2f = −L2f + L2f = 0. Conversely if (x, y) ∈ N (L) this means

L1x + L2y = 0 which implies L1x = −L2y which implies x = −L−1
1 L2y which means

(x, y) = M(y), i.e. (x, y) ∈ R(M). We have shown R(M) = N (L). That M has a

trivial nullspace is evident from its definition. �

Note that any finite-rank surjective linear map can be put into the form of the L in

this theorem with a suitable invertible transformation of the input. Suppose L : Rm → Rn

is a linear map of rank n. Then there exists an input transformation V so that with V

partitioned into its first n and remaining m− n inputs as V = [V1 V2],

LV x = (L̃1 := LV1)x1 + (L̃2 := LV2)x2 =
[

L̃1 L̃2

]




x1

x2



 ,

and L̃1 is invertible. A suitable input transformation can be seen by computing the singular

value decomposition of L or via a Graham-Schmidt orthogonalization procedure, to name

two possibilities.

The next result shows how, given a basis of the nullspace of an operator like

U−1AV where U and V are invertible transformations, how to adjust it to be the basis of

the nullspace of A.

Theorem 3.7 (nullspace under invertible input and output transformations)

Given U, V invertible. Suppose

R(B) = N (U−1AV ).

Then

R(V B) = N (A).

proof First, N (U−1AV ) = N (AV ) since Ux 6= 0 if and only if x 6= 0.

⊇ Suppose x ∈ R(V B). Then ∃w such that x = V Bw, which implies Ax =

AV Bw = 0 since Bw ∈ R(B).

⊆ Suppose x ∈ N (A). Then AV V −1x = 0, which by the hypothesis means V −1x ∈
R(B), or V −1x = Bw for some w, or x = V Bw.

�
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Now apply these results to the problem at hand. In this case the linear operator

whose nullspace we seek is given in (3.79). To get it into a form to apply Theorem 3.6, first

compute the SVD of the Dk:

Dk = Uk

[

Σk 0
]

V ∗
k . (3.81)

In general Dk is m × r. Our main assumption in this section, same as was assumed when

computing the particular solution in the previous section, is that Dk has rank m, i.e. it is

full row rank, and therefore Σk, which is square m×m, is invertible. Partition V into the

first m and last r −m columns:

Vk =
[

V1,k V2,k

]

. (3.82)

Define a transformed version L̃ of L by applying Vk to the input at time k, running L with

this transformed input and the initial condition, and then multiplying the output at time

k by U∗
k to produce L̃’s output. These are invertible input and output transformations.

Partitioning the input to L̃ into the first m and remaining r −m inputs,

L̃ := diag ({U∗
k}) L




I 0 0

0 diag({V1,k}) diag({V2,k})



 =
[

L0 L1 L2

]

(3.83)

where we have defined

diag({Vi,k}) :=








Vi,1

. . .

Vi,L








(3.84)

L0 :=




Ak

U∗
kCk



 (3.85)

L1 :=




Ak BkV1,k

U∗
kCk Σk





z-s

(3.86)

L2 :=




Ak BkV2,k

U∗
kCk 0





z-s

. (3.87)

Since we assumed that Σk is invertible for all k, then L1 is an invertible operator,
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according to Theorem 3.4. Applying Theorem 3.6,

N (L̃) = R













I 0

−L−1
1 L0 −L−1

1 L2

0 I













(3.88)

=
{(
x, −L−1

1 [L0x+ L2f ] , f
)

: x ∈ Rnx1 , f ∈ RL(nu−ny)
}

(3.89)

Composing the definitions (3.85)–(3.87), using Theorem 3.4, and after a state

transformation and eliminating unobservable states, we have

L−1
1

[

L0 L2

]

=




Ak −BkV1,kΣ

−1
k U∗

kCk BkV2,k

Σ−1
k U∗

kCk 0



 (3.90)

We now have a representation for a basis of the nullspace of L̃, (which can be

related to the nullspace of L as in Theorem 3.7). This representation is related to a dynamic

system and can be computed recursively; instead of doing a large matrix multiplication to

generate an element of the nullspace as a linear combination of basis vectors, the element

can be computed as the output of a dynamic system, whose input represents the coefficients

of the linear combination.

In general there is no guarantee that the system (3.90) is well-behaved; in particular

it may be unstable. However it’s possible to use this as a starting point to find another

basis which does involve stable systems.

Notice that what the parametrization (3.89) does is express the nullspace of L̃ as

the set of all input-output pairs of the system −L−1
1 [L0 L2]. The following theorem shows

how to find other ways to parametrize the input-output pairs of a given linear system.

Theorem 3.8 (input-output pairs) Suppose we have a system with matrix representation

G =




A B

C D



 .

Define

N :=




A+BF B

C +DF D



 (3.91)

D :=




A+BF B

F I



 , (3.92)
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where F is any compatibly-sized matrix. Consider the operators

B1(x, f) :=
(
x, f,G(x, f)

)
(3.93)

B2(µ,w) :=
(
µ,D(µ,w), N(µ,w)

)
. (3.94)

Then

R(B1) = R(B2).

proof

⊆ First, motivated by Theorem 3.4 we define

H :=




A B

−F I



 . (3.95)

Now given some x and f , choose µ = x, and define

w := H




x

f



 .

Then N(µ,w) = N(x,H(x, f)) = G(x, f) and D(µ,w) = D(x,H(x, f)) = f .

(For the latter, consider the initial condition and input responses of D and H

separately, and use Theorem 3.4.) Thus the range of B1 is contained in the range

of B2.
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⊇ Given some µ and w. Define x = µ and f = D(µ,w), and observe

G




x

f



 =




A B

C D








A+BF B

F I











x

x

w







(3.96)

=







A BF B

0 A+BF B

C DF D













x

x

w







(3.97)

=







A 0 0

0 A+BF B

C C +DF D










I −I
0 I











x

x

w







(3.98)

=




A+BF B

C +DF D








x

w



 (3.99)

= N(µ,w), (3.100)

where in going from (3.97) to (3.98) we used the state transformation T =




I −I
0 I



,

and in going to (3.99) we eliminated some uncontrollable states which are identi-

cally zero. This shows that the range of B2 is contained in the range of B1.

�

So, given a system G, one way to generate its input-output pairs is to choose

inputs and simulate G for those inputs to generate the outputs. In this theorem, for any F

we choose, we get a new way to generate input-output pairs of G which involves simulating

the systems N and D, both of which have dynamics governed by (A+BF ). When (A,B) is

stabilizable we can choose F such that A+BF has stable eigenvalues. With such a choice,

(3.91) and (3.92) form a right coprime factorization of G. Note that

N




xN

D−1(xD, f)



 =







A+BF 0 0

0 A B

C +DF C D













xN − xD

xD

f






, (3.101)

which equals G(x, f) if xN = xD = x, so in a sense G = ND−1. See Zhou et al. [46] for

more about discrete-time coprime factorizations. For time-varying systems, add a subscript

to all the matrices to get the desired result.
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S- - wz

Figure 3.2: Static operator

Putting it together: we want a basis for the nullspace of L. We can transform

L into an operator L̃ of the form for Theorem 3.6 using suitable unitary input and out-

put transformations. Theorem 3.6 then provides a system representation of a basis for the

nullspace of L̃, which can easily be adjusted to get the nullspace basis of L using Theo-

rem 3.7. The elements in this basis are pairs of the form of a free vector and the response

of a certain system to this vector. Finally, we can use a coprime factorization of the system

to produce these input-output pairs in a numerically well-behaved manner. This last step

assumes that L−1
1 [L0 L2] as defined in (3.85)–(3.87) is stabilizable.

3.3 Staticness Criteria, and Other Properties of S

Next we concentrate on knowledge and assumptions associated with the static

operator S. This element with its inputs and outputs is isolated in Figure 3.2. In the

framework we have laid out this means we would like to develop criteria for judging whether,

for a particular pair of finite-length signals (z, w), an operator which fits the profile of S
could map z to w. The less likely it seems that this could be true, the less willing we are

to accept (z, w) as estimates of the input and output signals of S that were realized during

the experiment.

Recall the definition of a static operator: in the context of dynamic systems, an

operator is static if the output at time t depends only on the value of the input at time t.

It does not depend on previous or future inputs, or time. In this case there should appear

to be a single-valued function which relates inputs to outputs.

This leads to the following preliminary idea. We do not allow input/output es-

timates for which a particular value of the input is repeated at two distinct times t1 and

t2, that is z(t1) = z(t2), but for which w(t1) 6= w(t2). A static operator could not map

such a z to such a w because in this case there is no single-valued function S such that

w(t) = S(z(t)) ∀t.
However this criterion turns out to not be especially useful in practice. The prob-
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lem is that the set of finite data records with repeated inputs like this is very small; indeed

when considered as a subset of all possible records of length L, this subset has zero mea-

sure. (For instance consider SISO data records of length 2. Then the input record belongs

to R2. The subset of R2 with the two inputs being equal is the one-dimensional subspace

z1 = z2 which as a subset of R2 has zero area.) Even for an estimate which is ruled out

by this criterion, there is another lying arbitrarily close (in any norm) that isn’t ruled out,

by slightly perturbing the repeated input points so that they are unique and there are no

longer repeated inputs. The modified input-output pair passes the test and is not at odds

with a static relationship, although for all practical purposes it may be indistinguishable

from one that does not pass the test.

There might be some hope to arrange so that the particular input applied to S
during the experiment is known and does have repeated inputs. This of course is not possible

in every situation, as sometimes we don’t have direct control over S’s input. Further, even

if we do have control authority over the input there is the problem of dealing with unknown

disturbances which disrupt our perfectly planned experiment containing repeated inputs.

Alternatively if we can directly sense the input there is the problem of measurement noise,

so that even if our sensors tell us an input value was repeated, we can’t be sure.

Conversely if a data record does not have repeated inputs then it is always possible

to find a static operator relating the two. Simply fill in the missing points of the function’s

domain with any value and it’s a static map. For example it’s possible to find an infinitely

differentiable function to fit the data by interpolating the points with a polynomial. When

the input is scalar perhaps the simplest choice is to use linear interpolation between the

specified points, and in higher dimensions one could extend this idea. In any case we are

able to rule out very few estimates this way. As for the rest one is just as good as another;

the repeated-input criterion does not differentiate between them at all.

Even though a particular finite-length input-output data record might not be tech-

nically inconsistent with a static input-output relationship, it is often the case that upon

viewing the data one is able to intuitively make the assessment that a static relationship

is unlikely. Consider the example shown in Figure 3.3 of two SISO systems driven by the

same input z to produce an output w. The first system is dynamic (discrete-time, first

order, stable), and the second is a static function. Looking at the scatter plot of w versus

z, and the corresponding function estimate formed by linear interpolation of those points,

it seems clear that the relationship between z and w in the first case is not static, while in
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Figure 3.3: Two systems driven by the same input: looking at the scatter plot from a
dynamic vs. a static system

the second case it appears to indeed be static, or at the least we would not rule it out. But

the simple repeated-input criteria does not allow us to rule out the data record from the

non-static system. The question is, how can we measure or enforce what we intuitively see?

Generally speaking our intuition is that the scatter plot of input-output pairs

coming from a static operator should be smooth, and not jumpy. Here “smooth” does

not refer to a technical definition in terms of differentiability, but a more intuitive notion

of not oscillating wildly. Although one should keep in mind that this is certainly not the

case in general, for many static operators of practical interest this intuition is reasonable.

Ultimately we need concrete quantitative cost functions that both capture our intuitive

notions and are simple and conducive to use in numerical procedures. In the following we

propose criteria which satisfy these goals to various degrees.

An important feature of our intuition is that it tends to become more reliable as

the data records increase in length, or more exactly, as the input data becomes more densely
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Figure 3.4: Intuition for associating a scatter plot with a static relation gets better as length
of data record increases.

spaced. That is, the intuitive “smoothness” criteria becomes more robust at differentiating

between input/output pairs that belong to static operators, and ones that don’t. To put it

another way, as the data length increases, the difference in smoothness grows more exag-

gerated between the scatter plot of signals with a dynamic relationship and that of signals

with a static relationship.

To see what is meant consider another example where two systems (both SISO)

are forced with identical input sequences. Scatter plots of the output versus the input are

shown in Figure 3.4. The plots in the first column correspond to system 1 and those in

the second column to system 2. The top row is scatter plots of the first seven input-output

points in the data records, the middle row uses the first 25 pairs, and the lower row uses

the first 200 pairs. If we were presented with the length-7 plots we would be hesitant to

classify either system as static or not, and in fact it’s difficult to distinguish any qualitative

difference between the two. But if shown the length-25 plots we would probably strongly
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suspect that system 1 is not static, especially if the data is generated by a system that

we think is reasonably well behaved and not pathological in some way. At this point the

scatter plot from system 2 still seems consistent with a static operator. Our early suspicions

become stronger when confronted with the scatter plots of length 200. At this point it is

easy to make the choice, for each plot, whether it is consistent with a static operator or not.

In view of this we should expect that our cost functions also become more reliable

as the length of the data record increases. Consequently we will analyze the behavior of

the proposed cost functions as a function of this length.

For a given system the data record obviously depends on what input is presented

to it. A particular input may make for a more or less decisive scatter plot, and a bad choice

may cause our intuition to fail even as the length of the observed data record increases.

Thus there are some issues which are related to the persistence-of-excitation issues that

come up in system identification and adaptive control. The intuition holds up well under

the common situation that as the data length increases the points become more dense

uniformly over the domain of interest.

In the previous section we saw that we can use the linear system constraints to

parametrize the set of unknown signals which are feasible in terms of a free parameter f ,

and this will be our fundamental decision variable in some of the algorithms we propose.

The cost functions that follow which judge the fitness of (z, w) as an input/output pair of

S in turn judge the fitness of f by applying the criteria to (zf , wf ).

Thus far the comments in this section apply to static operators with arbitrary

numbers of inputs and outputs. As we formulate cost functions in the upcoming sections

we will focus on single-output operators. This doesn’t sacrifice generality. A general MIMO

function φ(x) with m outputs and n inputs can be thought of as a collection of m single-

output functions φi(x), of n inputs each:

φ(x) =








φ1(x)
...

φm(x)







.

Further, φ(·) is static if and only if each of the φi(·) is static. The cost functions to follow

can be applied to each of the single-output φi, resulting in a problem with m cost functions;

these can be individually constrained, or combined to form a scalar cost function as needed.

Before going farther we take a moment to introduce some notation. For a scalar
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signal z we define P z as the permutation operator which sorts the elements of z in increasing

order. So for a scalar signal w ∈ RL, this operator rearranges the elements of w in a way

that depends on z. As with all permutation operators, P z is linear, and has a matrix

representation, and we use P z interchangeably to refer to the operator as well as its matrix

representation. For example if z =
(

3 2 1 4
)T

, then we have

P z =










0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1










.

Next, let D1 : RL → RL−1 be the first difference operator:

(D1x)(t) = x(t+ 1) − x(t),

and D2 : RL → RL−2 is the second difference operator:

(D2x)(t) = (D1x)(t+ 1) − (D1x)(t) = x(t+ 2) − 2x(t+ 1) − x(t).

These two operators take the differences between successive points of a vector, and are

referred to as neighboring-pairs diff operators. Once again these are linear operators. For

L = 4 we have the following matrix representations:

D1 =







−1 1 0 0

0 −1 1 0

0 0 −1 1







and D2 =




1 −2 1 0

0 1 −2 1





We can also define an operator which computes the difference between all pairs. Dap :

RL → RL(L−1)/2, and is defined so that

(Dapx)(t) =

























x(2) − x(1)

x(3) − x(1)
...

x(L) − x(1)

x(3) − x(2)
...

x(L) − x(2)
...

x(L) − x(L− 1)
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This is referred to as the all-pairs diff operator. The associated matrix here is

Dap =
















−1 1 0 0

−1 0 1 0

−1 0 0 1

0 −1 1 0

0 −1 0 1

0 0 −1 1
















,

For one of these matrices, such as D1, D1
k will refer to the k’th row of that matrix.

3.3.1 Dispersion Function

In this section we present a quantitative measure of the compatibility of an input-

output pair (z, w) with a static relation between them. This measure does a good job

of capturing staticness, and at the same time is somewhat amenable for use in convex

programming solvers. First we consider SISO static operators, so the input and output

signals z and w have size nz = nw = 1 and hence (z(t), w(t)) ∈ R2. Consider a cost

function J (z, w) which for a particular data record (z, w) is the sum of the squares of the

lengths in the z −w plane of the lines connecting the points in the scatter plot, connecting

the points in order of increasing z.

For instance consider the following scatter plot of a data record with 5 points, with

the connecting lines drawn in

z

w

(z
1
,w
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In this case the cost would be the sum of the squares of the four lengths di.

The quantity that is captured here is a notion of the “arclength” of the scatter plot.

When {(z, w)} is points lying on the graph of a static function, this measure is essentially

a (non-uniform) discretization of the integral
∫
dz2 + dw2 =

∫
ds2, where s is the arclength

of the graph. Since
∫
ds2 = 0 for continuous functions, we can expect this measure will
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converge to zero as the density on the z-axis of the samples increases and the approximation

of the discretization to the actual integral becomes better.

The measure matches our intuition for static operators in that it tends to be large

for scatter plots whose points jump up and down erratically as you pass through them

sequentially left to right, and it is smaller for scatter plots in which the points have a more

orderly and monotonic pattern. In the first case the lengths between points is greater than

when the scatter plot is more “smooth”. This behavior is confirmed if we compute the cost

function for the example of Figure 3.3; for the scatter plots shown there, J (z, w) = 4738

for the dynamic system shown on the left side, while J (z, w) = 14 for the static operator’s

scatter plot. This indicates that we may be able to rely on this function to distinguish

between input/output data records based on to what degree they are consistent with a

static relationship between them.

Notice that the order in which we connect the sample points for computing the

cost function is generally different from their chronological order as they appear in the data

record. Thus any algorithm computing the cost of a given data record (z, w) will at some

point have to determine the ordering of the z(t), i.e. sort them, in order to determine which

distances are being squared and summed. This has important implications for how easy it

is to use this function, as well as general properties the function possesses.

Using notation defined earlier we can make our definition of the cost function

precise. Recall P z is defined as the permutation operator which, when applied to the

vector z, rearranges its elements in increasing order. For (z, w) a data record of length L,

(P zz, P zw) is the rearranged points so that they’re sorted in time according to increasing

values of z. Now the cost function described above, for such an input-output pair, is defined

as

Definition 3.9 (dispersion) For (z, w) a SISO data record of length L, the dispersion of

that data record is defined to be

J (z, w) :=
L−1∑

t=1

[(P zz)(t+ 1) − (P zz)(t)]2 + [(P zw)(t+ 1) − (P zw)(t)]2 (3.102)

= ‖D1P zz‖2
2 + ‖D1P zw‖2

2. (3.103)

We call this operator the dispersion function; it was previously introduced in [44] and [11].

The name reflects the intent of measuring how widely dispersed the points are from lying

on the curve of a static function, or how cloudy the scatter plot looks.
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Notice that the second term in the definition, as a function of w alone, is convex

quadratic, which is attractive from an optimization standpoint. It can be handled in various

solver software either as an objective function or a constraint. But as a function of both z

and w it’s not so nice, since P z (the operator itself) depends on z in a complex, nonlinear,

nondifferentiable way. Similarly the first term is convex quadratic in z only if we consider

P z to be fixed. This will be a factor in algorithms later on, for instance at times we will

employ iterative schemes which successively fix the permutation operator, minimize over w,

update the permutation, and repeat.

Remembering our setup where the estimates zf and wf are parametrized in terms

of a free variable f , the dispersion as a function of f is

J (f) := ‖D1P zf zf‖2
2 + ‖D1P zfwf‖2

2. (3.104)

Recall from Section 3.2 the dependences of zf and wf on f are affine. In general these both

depend on f , and so does the permutation operator P zf . Once again if the permutation

operator is fixed then J (f) is convex quadratic in f .

The dispersion doesn’t depend on the mean of the signals; we can add a constant

to w and/or z and it doesn’t change J (z, w):

J (z + α1, w + α2) = J (z, w).

That’s reasonable. Scaling does change the dispersion:

J (α1z, α2w) =
∥
∥D1P z(α1z)

∥
∥

2

2
+
∥
∥D1P z(α2w)

∥
∥

2

2
= α2

1

∥
∥D1P zz

∥
∥

2

2
+ α2

2

∥
∥D1P zw

∥
∥

2

2
.

This is somewhat undesirable. For instance such scalings may simply represent a change of

units for the input and/or output of the operator in question. This clearly has nothing to

do with whether or not that operator is static, yet it affects the dispersion measurement.

Sometimes this means we need to choose weightings that account for the magnitude of the

input and output of the operator, in order to normalize this effect. This is true when the

system involves more than one static function to be identified, and the relative sizes of their

dispersion functions is important. Choosing good weightings will often be a trial and error

process. This is discussed more in Chapter 4.

We mentioned above that our intuition tends to get more reliable as the length

of the data record increases. Let us investigate whether the dispersion function behaves
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similarly. We’d like to convince ourselves that it can be used as a reliable indicator of

staticness.

One thing to check is what happens in the limit as the data length L goes to

infinity. When S is static, under a variety of conditions it can be shown the dispersion is

bounded or goes to zero as L→ ∞. For example we can quickly show

Theorem 3.10 Suppose w = Sz with S a static map and total variation bounded by M .

Then for any input record z (of any length L), which is contained within an interval [a, b],

J (z, w) ≤ (b− a)2 +M2.

proof:

J (z, w) =
L−1∑

t=1

(
P z

t+1z − P z
t z
)2

+
L−1∑

t=1

(
P z

t+1w − P z
t w
)2

≤ (b− a)2 +

(
L−1∑

t=1

∣
∣P z

t+1w − P z
t w
∣
∣

)2

≤ (b− a)2 +

(

sup
ζ1=a≤ζ2≤···≤ζL=b

L−1∑

i=1

|S(ζi+1) − S(ζi)|
)2

≤ (b− a)2 +M2

In the second-to-last line, the sup is over all size-L partitions of [a, b], and this is

bounded by the total variation, defined as the sup over all partitions of [a, b]. �

Consequently, if the dispersion function is unbounded as L goes to infinity, assuming the

input is bounded, then the operator is not a static operator with bounded variation. Or,

consider stronger conditions on the input and S, namely suppose w = Sz with S a static,

continuously differentiable map. Then it can be shown that as L → ∞, if the the spacing

of the input data z becomes uniformly increasingly dense, meaning the maximum gap

between input points goes to zero, then the dispersion goes to zero [11]. This is expected

because the integral
∫

I ds
2 of the square arc length over some interval I of the graph of a

continuous function is zero, and under these conditions the dispersion is a better and better

approximation to this integral. Similar results are available in a stochastic setting. Suppose

the data z is generated by an independent, identically distributed stochastic process, with

each z(t) having density function pZ(·), which is bounded below by a constant M > 0 on

some interval [a, b]. Then if we consider a dispersion criteria that only considers data points

within that interval, the dispersion quantity converges to zero in probability [11].
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These limit results are valuable to show that the dispersion criterion behaves in

a reasonable fashion, that as the length of the data record increases the dispersion draws

a sharper distinction between static and non-static maps. We expect that as we take

advantage of more experiment data the we are better able to distinguish whether the data

is consistent with a static relationship, and the above results help to confirm this.

Ultimately however data records are finite, and due to computational constraints

sometimes the amount of data that can be handled is quite finite indeed. So it is also useful

to look at finite data records, and how the behavior of the dispersion measure varies with

data length. We’d like to get some kind of feel for how well the dispersion function separates

static and dynamic systems. A convincing argument that it does a good job would involve

analysis of its performance for various static and dynamic operators, as the input varies

over a typical family of inputs that one might expect to see in practice.

One way to characterize the behavior of the dispersion function for a family of

inputs is to consider z as a stochastic process. Then for a given operator S and data length

L, the dispersion J (z,Sz) is a random variable with some probability density. In some

sense this distribution function is a complete picture of the performance of the dispersion

measure for that family of inputs. If the stochastic process characterizes a typical family

of input signals that is seen in practice, then the distribution function describes the typical

behavior of the dispersion measure. The hope is that in general the distributions associated

with static S are small, centered near zero, and those for dynamic S are centered away from

zero, and the two cases are well separated for large L. So that given a particular value of

the dispersion associated with some signals (z, w), it is possible to classify it as coming from

either a static or dynamic operator, with a high chance of being correct.

In general it’s difficult to derive an analytical expression for the probability density

function of the dispersion. This is true even if Z has a simple description (for instance

independent identically-distributed (IID) Gaussian white noise) due to the complex nature

of J (·, ·). In some instances it’s possible to derive expressions for the mean and variance

for a given S as a function of L, but this is also usually hard.

By way of illustration, Monte Carlo simulation can be used to find the mean and

variance numerically for specific S and distributions of the input.

Example 3.11 In order to define a realistic input process Z, start with an independent,
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Figure 3.6: Operator S2.

identically distributed (IID) process U with U(t) unit normally distributed,

U(t) ∼ N (0, 1).

and define Z by

Z = LU

where L is a linear filter. Thus Z is colored Gaussian noise. In this case L is a second-

order butterworth filter with spectrum as in Figure 3.5. The coloring filter is introduced

partly to make the example more realistic; in general the input to S is taken as the

output of a dynamic system, and not controlled directly, and so there is correlation

between the outputs at different times. We also want to illustrate the point that a

given operator can be dynamic, yet look static when the input is slowly varying with

respect to these dynamics. In practice the term “dynamic” is relative; it can be argued

that almost every system is some dynamic, it’s just that some operate so fast that from

our point of view they are static. To make this point with the dispersion function we

need an input that doesn’t have arbitrarily high frequency components.

We will look the dispersion of four operators. S1 is the identity operator, clearly

static. S2 is a more interesting static function, graphed in Figure 3.6.

Notice that it is discontinuous at zero, with a discontinuity of size one. We don’t

expect the dispersion of this operator to converge to zero as L → ∞, but instead to

a finite value. In this case we can reason that the finite value is unity. S3 and S4 are
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Figure 3.7: Sample means (solid lines) and ±1 sample standard deviation sleeve (dashed
lines) of the dispersion J (z,Siz) with random inputs, for four operators.

dynamic operators. They are first-order linear systems:

S3 : wk+1 = 0.9wk + 0.1uk (3.105)

S4 : wk+1 = 0.02wk + 0.98uk (3.106)

Note the dynamics of S4 are considerably faster than those of S3. With respect to

inputs that vary slowly, or at some bounded rate, or whose spectrum rolls off at high

frequencies, S3 is “more dynamic” than S4; it responds to inputs more slowly.

In order to produce sample points of the dispersion, for a given L and Si a real-

ization of U is generated and filtered to compute z, then w = Siz is computed. Before

computing the dispersion of (z, w), we scale the size of w to have unit standard devi-

ation. This makes the dispersion computations more comparable across the different

operators Si. With respect to staticness, we should have no reason to prefer signal

pairs that differ only by a scaling, yet the dispersion computation is affected by this,

so we normalize the output w to have the same scaling.

Figure 3.7 shows results for several L between 10 and 1000. For each data record

length, 500 samples of u are taken and the dispersion J (Lu, SLu) is computed for

each. The sample mean of the dispersion is plotted, as well as a sleeve about the mean

that is ±1 sample standard deviation. The important thing to note about this figure

is not so much the absolute levels of the dispersion, but the trends as L increases,

and the separation of the dispersion distributions for the static operators from those of

the dynamic operators by several orders of magnitude. As L increases the dispersion

for the dynamic operators grows quickly, while the dispersion of the static operators
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Figure 3.8: Empirical distributions of the dispersion measure for a random input, for two
data lengths and four operators Si.

decreases. The sleeves show that the probability densities of the dispersion for the

different operators are well-separated from each other.

Notice that the dispersion for the static S2 is larger than that of the static identity

S1. This is primarily due to the discontinuity. As well, the dispersions of the dynamic

systems differ, that of S4 is always smaller than that of S3. This is consistent with the

idea that S3 has a faster response than S4 and so with respect to the frequency-limited

input signal it appears more static. Its dispersion is still much larger than either of the

two truly static systems, however.

We can also look at histograms of samples of the dispersion, which form an ap-

proximation of the probability density function of the dispersion measure (the empirical

histogram) [34]. In Figure 3.8 we chose to look at 2000-sample-point histograms for

two data record lengths, L = 100 and L = 500. These are computed using 30 equally-

spaced bins. Once again we see that for the larger data lengths, the distributions of

the static and dynamic operators are well separated. �

Similar results are obtained for other classes of input. In general the division

between static and dynamic systems is more striking when the input is white noise, and the

z(t) for different times are independent. More deterministic-looking input signals, such as

sine sweeps, can also do a good job. For instance, Figure 3.9 is the analog of Figure 3.7 where

now the input is deterministic instead of colored noise; a sine chirp, linear in frequency:

z(t) = 2 sin

[

2π

(

0.025 + (0.1 − 0.025)
t

L

)

t

]

.
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Figure 3.9: Dispersion J (z,Siz) with sine chirp input, for four operators.

Two properties that make a signal a good candidate for separating static and

dynamic systems are

1. the points z(t) form a dense covering of some part of the domain of S; this will cause

the dispersion of static systems to be small, and

2. the input contains frequency components that are high enough to reveal the dynamics

of systems that those systems we want to consider as dynamic, so that the dispersion

of these systems is large.

Realizations of white and colored noise tend to do well at both. Criteria such as these

can aid in designing experiments that lead to good estimates. There is related material

regarding what makes input signals favorable in Chapter 5.

At any rate these explorations of how the dispersion function behaves for various

input signals and static and dynamic operators make a convincing argument that the dis-

persion function is a reasonable measure of staticness. If we are looking for input-output

estimates that are consistent with a static relationship then their dispersion should be small,

because the dispersion of a static function is reliably small, and that of a dynamic function

is reliably large and grows with data record length. This holds for a wide array of different

operators and input signals (white noise realizations, colored noise realizations, sufficiently

exciting deterministic signals), and it’s fairly clear what properties make an input a good

choice for differentiating between static and non-static operators. For these inputs, the

distinction drawn between the two types of operators grows more clear as the data record

length becomes larger.

This motivates the idea of minimizing dispersion for candidate estimates of z and
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w. Whether or not actually minimizing is the correct thing to do might be questionable,

because for any finite L and all but degenerate inputs, the dispersion will achieve some value

greater than zero, even for static operators. In reality we will see that this generally doesn’t

present a problem. In simulation examples the dispersion of the actual input-output signals

is usually lower than the estimated signals. The achieved dispersion is usually very small

(and once again this is more and more true as L increases), and the minimization problems

generally don’t over-optimize to achieve a smaller value. Nevertheless it may be valuable to

keep this issue in mind. Another option is to constrain the dispersion measure of estimated

signals, while minimizing some other property of interest such as another staticness or

smoothness measure, or some estimate of a stochastic property of the candidate signals.

3.3.2 Related Staticness/Smoothness Measures

arclength

Looking back at Section 3.3.1 the dispersion is defined as the sum of the squares

of the lengths of the connecting lines in the scatter plot. A similar quantity is the arclength

of the scatter plot, the sum of the lengths of the connecting lines:

JA(z, w) :=
L−1∑

t=1

(

(D1
tP

zz)2 + (D1
tP

zw)2
)1/2

. (3.107)

Recall for continuous static operators the dispersion measure goes to zero as the density

of z increases. In contrast the limiting value of JA is the arclength of the graph of the

function. JA is a nonconvex nondifferentiable function of z and w due to the dependence of

P z on z. When P z is replaced by a fixed matrix independent of z then it is differentiable,

and it is possible to use JA as an objective or constraint in convex programs by introducing

auxiliary variable into the problem.

total variation

If in the arclength summation we drop the part of the length in the z direction

and sum just the length in the w direction, we are left with the total variation of the (linear

interpolation of the) scatter plot:

JTV(z, w) :=
L−1∑

t=1

∣
∣D1

tP
zw
∣
∣ = ‖D1P zw‖1 (3.108)
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The same comments apply as for arclength regarding convexity and behavior as z becomes

more dense.

neglecting the z part of J

At times a simplified version of the dispersion function consisting of only the second

term in (3.103) is useful:

Jw(z, w) := ‖D1P zw‖2
2 (3.109)

or

Jw(f) =
∥
∥D1P zfwf

∥
∥

2

2
=
∥
∥D1P zf (w0 +Kwf)

∥
∥

2

2
. (3.110)

Jw has a similar relationship to the full dispersion J as the total variation measure JTV

has to the arclength JA. If all elements of z are measured or assumed known then the first

term is fixed and known and has no consequence for estimating unknown signals, leaving

only Jw. Even if the first term is not fixed, it is small for inputs z such that the sorted

points P zz are closely spaced, and it can still be sensible to neglect it. Note this holds

regardless of the operator S since nothing in the first term depends on S (it depends only

on z). So at times we will use the simplified dispersion function (3.109) even when z is

not known. That is we neglect the contribution of the separation of the inputs to the cost

function, and only look at the output values. In our experience, the intuitive notion that

the scatter plot should be orderly is preserved under this modification.

second-difference dispersion

A variation on the dispersion is to use a higher-order difference than in the defini-

tion of J . For instance we can define a dispersion that uses second differences:

J2(z, w) :=
L−2∑

t=1

[
P z

t+2z − 2P z
t+1z + P z

t z
]2

+
[
P z

t+2w − 2P z
t+1w + P z

t w
]2

(3.111)

= ‖D2P zz‖2
2 + ‖D2P zw‖2

2, (3.112)

and dropping the z part we have

J2w(z, w) :=
L−2∑

t=1

[
P z

t+2w − 2P z
t+1w + P z

t w
]2
. (3.113)

Whereas J penalizes the sum of squares of distances between points in the scatter plot, J2

penalizes the sum of squares of the difference in distance between successive pairs of points,
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Figure 3.10: Scatter plot with outlier points.

a different type of smoothness. Using both J and J2 in a problem allows more control over

the nature of the scatter plot of the resulting estimates.

sum of slopes (first and second derivatives)

One feature of the dispersion function that is perhaps undesirable occurs when

there are relatively large gaps in the input data. There may be two input-output pairs,

(z(t), w(t)) and (z(s), w(s)), with z(t) and z(s) spaced far apart with no input pairs occur-

ring between them on the z axis. For instance this happens when the input is normally

distributed white noise, which will contain a small number of points in the tails of the distri-

bution. Even when the operator is static the w(t), w(s) might then be far apart as well. In

this case the term (|z(t)− z(s)|2 + |w(t)−w(s)|2) makes a large contribution to the disper-

sion, even though this situation is not incompatible with a static, or even smooth, operator.

Instead it’s an artifact of an unfortunate sparsely-spaced data pair, and the squaring nature

of the dispersion function. But the procedure for forming estimates of z and w will tend

to want to produce a pair that is closer together, to minimize this cost. For z’s that are

spaced far apart, in some sense we would like to allow the difference in the w’s to be large

as well, and to penalize that less.

Indeed it is often the case that the input data will be sparsely spaced near the

edges of the interval in which the data is contained, and there will be a few outliers. This

motivates us to consider other measures of staticness that can be used instead of dispersion,

or, more generally, to augment the dispersion measure. Consider the 7 point scatter plot of

Figure 3.10. Here there are 5 points spaced relatively closely, as compared to the outlying

points on either side. These two points are penalized substantially more than the rest by
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the dispersion.

One idea is to penalize scatter plots which involve large derivatives. Define JD1(z, w)

as the sum of the squares of the slopes of the lines drawn between successive points in the

scatter plot. By penalizing the approximate first derivative, we discourage oscillations and

noise-like behavior in the scatterplot. In the scatter plot of Figure 3.10 there are six terms

in JD1. The slopes of lines 3, 4, and 5 are larger than those of 1 and 6, and so the sort

of up-and-down jiggling of the middle points incurs a greater cost than the derivatives as-

sociated with the two extreme points. This is a smoothness penalty. We approximate the

derivative of the scatter plot with first-order differences (using notation defined in earlier):

∂1
t (w, z) :=

D1
tP

zw

D1
tP

zz

and sum the squares to produce this cost function,

JD1(z, w) :=
L−1∑

t=1

(
∂1

t (w, z)
)2

(3.114)

=
L−1∑

t=1

(
D1

tP
zw

D1
tP

zz

)2

(3.115)

=
∥
∥D1P zw ./ D1P zz

∥
∥

2

2
. (3.116)

(Here, given two vectors of the same length we use ′./′ to mean element-by-element division,

producing another vector of the same length: (a./b)(t) := a(t)/b(t).)

Going further, we could also approximate second derivatives by differencing. De-

fine the operator

∂2
t (w, z) :=

∂1
t+1(w, z) − ∂1

t (w, z)
(

zt+2+zt+1

2 − zt+1+zt

2

)

=
2

(zt+2 − zt)

[
wt+2 − wt+1

zt+2 − zt+1
− wt+1 − wt

zt+1 − zt

]

= 2

[
wt+2 − wt+1

(zt+2 − zt)(zt+2 − zt+1)
− wt+1 − wt

(zt+2 − zt)(zt+1 − zt)

]

= 2

[
wt

(zt+2 − zt)(zt+1 − zt)
− wt+1

(zt+2 − zt+1)(zt+1 − zt)
+

wt+2

(zt+2 − zt)(zt+2 − zt+1)

]

This leads to a second derivative cost

JD2(z, w) :=
L−1∑

t=1

(
∂2

t (P zw,P zz)
)2

(3.117)



81

Instead of large slopes, JD2 penalizes large changes in slope.

First and second derivative criteria and combinations of them, along with the Lip-

schitz bounds to be discussed in Section 3.3.4, are more traditional measures of smoothness

of a function. As usual JD1 and JD2 are nice convex functions of w but messy functions of z.

As well, they can be sensitive to z, in that small perturbations from a nominal z can result

in large changes in their value. This can make them harder to use in practice, especially

in problems where z is not known and needs to be estimated. For instance this applies

to the “bootstrapping” ideas for solving these problems that are introduced in Chapter 4,

where intermediate approximations to z are used in successive iterations. We have found

the dispersion measures J and J2 are much less sensitive to perturbations in z while still

capturing the essential behavior of JD1 and JD2, so having introduced the latter, in practice

we will stick to using the dispersion.

comparisons

Depending on prior knowledge about the candidate S being identified there may

be reason, in enforcing staticness or smoothness of estimated nonlinearities, to prefer to use

one of J (Jw), J2 (J2w), JA (JTV), JD1, JD2, or Lipschitz constraints (to be discussed in

Section 3.3.4). Or a certain combination of these.

In the same way that Example 3.11 looked at the behavior of the dispersion func-

tion as the data record length grows, for the operators Sk, k = 1..4 and using colored

noise input, we can also look at these other dispersion-like measures. Analogously to Fig-

ure 3.7, Figure 3.11 shows the sample means for seven of the staticness measures, for the

four operators and the same input data as previously.

The data for J is the same as in Figure 3.7. The modified dispersion function

Jw is also shown; notice that its difference from the full J is small. The same comment

applies for JA and JTV; they are nearly equal. All of the criteria have the property of

being much larger for the two dynamic operators than for the two static ones. For the

dynamic operators, each measure increases with increasing data record length (increasing z

density). For the static operators, the behavior as L increases differs. With J , Jw, and J2

the value decreases as density increases, for JA and JTV the value approaches a constant

(the arclength or total variation respectively), and for JD1 and JD2 the value increases (but

is still much smaller than for either of the dynamic operators).
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Figure 3.11: Sample means (random inputs) vs record length L for 8 of the dispersion-like
measures (J , Jw, JA, JTV, J2, JD1, and JD2), for four operators each. In this figure JD1

and JD2 are divided by 1000 and 100000, respectively.
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3.3.3 Extensions of Dispersion to Multi-Input Operators

The Lipschitz conditions discussed in Section 3.3.4 apply equally well to multi-

input S as well as to scalar-input operators (although in some situations where S is MIMO

we may have reason to consider a more structured set of Lipschitz constraints—see Section

3.3.5). But the dispersion function as defined in Section 3.3.1 applies only to single-input

S only. It can however be extended to multi-input operators in a relatively straightforward

manner, while retaining many of the same features (both desirable and undesirable) of the

scalar case.

To show the way to do this we consider now a two-input, single-output mapping.

Analogous to the arclength-like measure of Section 3.3.1, we extend the definition of the

dispersion function to be an area-like measure of the two-dimensional manifold defined by

the graph of this function. The main issue introduced by the extra dimension is how, given

a finite set of points (z, w) in three-dimensional space supposedly lying on the graph of the

function, to connect them to form a two-dimensional object that approximates the graph,

and what an appropriate measure of the dispersion of this object would be.

In the two-input case the input vector z consists of points z(t) = (z1(t), z2(t)), t =

1..L lying in the z1–z2 plane. One way to proceed is to use a triangulation of these points

to in turn define an interpolation of the data (z, w) which is a two-dimensional surface. The

three points for the k’th triangle are indexed by the three time points (tk,1, tk,2, tk,3):

z(tk,1) =




z1(tk,1)

z2(tk,1)



 , z(tk,2) =




z1(tk,2)

z2(tk,2)



 , z(tk,3) =




z1(tk,3)

z2(tk,3)



 , k = 1..M. (3.118)

The number M of triangles formed in a given triangulation procedure depends on the

particular algorithm used, the length L of the data, and the actual value of z. A good

candidate is Delaunay triangulation, which is popular due to desirable geometric properties.

In this case the number of triangles produced is O(L), where L is the number of points in

the set, in this case equal to the data length. Empirically, with points selected randomly,

we find the number is roughly 2L. Now tack on the corresponding w points and consider

the convex hull of each triplet of points, which defines M facets:

Fk := Co








z(tk,1)

w(tk,1)



 ,




z(tk,2)

w(tk,2)



 ,




z(tk,3)

w(tk,3)







 , k = 1..M. (3.119)
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Figure 3.12: Construction of two-input dispersion function.

The union of these facets defines a surface that is a reasonable way to interpolate the data

points to produce an estimate of the function graph they might belong to.

Analogously to Section 3.3.1, where we defined the dispersion of single-input data

to be the sum of the squares of the lengths of the interpolating line segments of the sorted

data, here we define the dispersion of two-input data to the the sum of the squares of the

areas of the interpolating facets of the triangulated data:

Definition 3.12 (dispersion, two-input) For (z, w) a single output, two-input data

record of length L, the dispersion of that data record is defined to be

J (z, w) :=
M∑

k=1

area2(Fk) (3.120)

When the data is a set of points lying on the graph of a surface, this sum approximates the

integral of the squared-area over a portion of the surface,
∫
dA2.

As for actual computation, recall that use the norm of the cross-product between

any two sides of a facet is equal to the area of its facet. Consider Figure 3.12, where a

portion of the triangulation of z and the resulting triangles and facets are shown. Consider

facet Fk. Choosing two of its sides vk,1 and vk,2 as shown, the area of the facet can be
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computed as

area2(Fk) = ‖vk,1×vk,2‖2 (3.121)

=

∥
∥
∥
∥
∥
∥
∥






z1(tk,2) − z1(tk,1)

z2(tk,2) − z2(tk,1)

w(tk,2) − w(tk,1)




×






z1(tk,3) − z1(tk,1)

z2(tk,3) − z2(tk,1)

w(tk,3) − w(tk,1)






∥
∥
∥
∥
∥
∥
∥

2

(3.122)

=

∥
∥
∥
∥
∥
∥
∥






(z2(tk,2)− z2(tk,1)) (w(tk,3)− w(tk,1))− (z2(tk,3)− z2(tk,1)) (w(tk,2)− w(tk,1))

− (z1(tk,2)− z1(tk,1)) (w(tk,3)− w(tk,1)) + (z1(tk,3)− z1(tk,1)) (w(tk,2)− w(tk,1))

(z1(tk,2)− z1(tk,1)) (z2(tk,3)− z2(tk,1))− (z2(tk,2)− z2(tk,1)) (z1(tk,3)− z1(tk,1))






∥
∥
∥
∥
∥
∥
∥

2

.

(3.123)

As a function of (z, w), the two-input dispersion (3.120) is a messy function, com-

posed of the triangulation step, followed by summing the squares of the facets. As a function

of w alone however it is convex quadratic. To see this rewrite (3.123) as

area2(Fk) =

∥
∥
∥
∥
∥
∥
∥
∥

b+







z2(tk,3) − z2(tk,2) z2(tk,1) − z2(tk,3) z2(tk,2) − z2(tk,1)

z1(tk,2) − z1(tk,3) z1(tk,3) − z1(tk,1) z1(tk,1) − z1(tk,2)

0 0 0













w(tk,1)

w(tk,2)

w(tk,3)







∥
∥
∥
∥
∥
∥
∥
∥

2

(3.124)

with

b =







0

0

(z1(tk,2) − z1(tk,1)) (z2(tk,3) − z2(tk,1)) − (z2(tk,2) − z2(tk,1)) (z1(tk,3) − z1(tk,1))






.

Hence the squared area of an individual facet is expressed as the squared norm of a linear

function of the elements of w. This is a similar situation to that which we saw in the

single-input case, where as a function of w and z the dispersion is messy, but as a function

of w along it is convex quadratic.

The behavior of the two-input dispersion function for various static and dynamic

operators, as a function of length, has similar features to the single-input version, as dis-

cussed in Section 3.3.1. In particular its value tends to decrease with increasing data

length for static operators, while it increases for dynamic operators. For static operators

of bounded variation, the dispersion can be bounded above; as data becomes increasingly

dense the dispersion approaches a finite value, which is zero if the operator is continuous.

These results, and results for stochastic settings, can be found in [11].
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The procedure can be extended to operators with more than two inputs. Gen-

eralizations of Delaunay triangulation exist in three and higher dimensions. For instance,

three-dimensional space gets partitioned into tetrahedrons, which are the analogs of trian-

gles in two-dimensional space. In general one can define the dispersion as the sum of the

“areas” of the convex hulls of the points associated with the “hyper-triangles”.

3.3.4 Lipschitz Smoothness

A common notion of the smoothness of a function is Lipschitz continuity. A

function f : D → R is said to be Lipschitz continuous if there exists γ ∈ R such that

‖f(x) − f(y)‖R ≤ γ‖x− y‖D ∀x, y ∈ D. (3.125)

In this case we say f has Lipschitz bound γ, and we write f ∈ Lγ to denote this situation.

This is a essentially a bound on the derivative of f . The definition (3.125) applies to

functions with an arbitrary number of inputs and outputs, using appropriate choices of the

norms.

Prior knowledge about S, or some part of S, may include Lipschitz bounds.

Whereas the staticness criteria that are mentioned above are concerned with an integral of

a quantity like arclength over the domain of S, or a sum of the slopes of the scatter plot, a

Lipschitz constraint is a pointwise bound on the derivative. For instance this can be used

to provide finer control over more localized smoothness properties of estimates.

The finite-length discrete sequence (z, w) is a possible input-output pair of an

operator with Lipschitz bound γ if and only if the points in the scatter plot satisfy (3.125)

pairwise. Using the 2-norm, we have the resulting set of constraints

‖w(t) − w(s)‖2 ≤ γ‖z(t) − z(s)‖2 ∀t, s ∈ T. (3.126)

With a more general weighted 2-norm allows we can adjust the smoothness for each input

direction independently, e.g.

‖w(t) − w(s)‖2
2 ≤ (z(t) − z(s))TGTG(z(t) − z(s)) ∀t, s ∈ T, (3.127)

where G is a weighting matrix.

For a data record of length L, (3.126) or (3.127) is L(L− 1)/2 inequalities. How-

ever if the relation is single-input, it’s equivalent to check just the adjacent pairs (triangle
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inequality), and the pair (z, w) is consistent with Lipschitz constant γ if and only if

‖P z
t+1w − P z

t w‖2 ≤ γ|P z
t+1z − P z

t z| = γ|D1
tP

zz|, t = 1..L− 1. (3.128)

This is O(L) constraint functions, whereas (3.126) is O(L2). In order to use this reduced

set of conditions it is necessary to know the ordering of z, i.e. P z.

How well suited are these constraints for various optimization frameworks? The

constraints of (3.126), written in a more canonical form, are

‖w(t) − w(s)‖2 − γ‖z(t) − z(s)‖2 ≤ 0, ∀t, s ∈ T (3.129)

The left hand side here is function that is quadratic, and convex in w but nonconvex in

z, and so in general (3.126) is a set of constraints that is quadratic but nonconvex in

the decision variables. Similarly, the constraints (3.128) are convex quadratic in w, but

nonconvex nonquadratic in z. If P z is replaced with a fixed permutation operator then it

becomes quadratic, but still nonconvex, in z.

An obvious special case is when z is fixed. In this case (3.126) and (3.128) are

sets of L(L − 1)/2, resp. (L − 1) convex quadratic constraints in w—a large number, but

the constraints are attractive for optimization. If, further, w is scalar, then these can be

replaced with linear inequality constraints in w (even better); (3.126) becomes

(w(t) − w(s)) ≤ γ‖z(t) − z(s)‖2, ∀t, s ∈ T, (3.130)

−(w(t) − w(s)) ≤ γ‖z(t) − z(s)‖2, ∀t, s ∈ T, (3.131)

L(L− 1) linear inequality constraints in w, and (3.128) becomes

(P z
t+1w − P z

t w) ≤ |P z
t+1z − P z

t z|, t = 1..L− 1, (3.132)

−(P z
t+1w − P z

t w) ≤ |P z
t+1z − P z

t z|, t = 1..L− 1, (3.133)

2(L− 1) linear inequality constraints in w.

In some situations it is possible to use a Lipschitz bound that varies over the

domain of S. For instance this can be useful when S is known to have a sharp transition

or discontinuity somewhere in an uncertain interval, and otherwise its derivative is small.

A z-dependent Lipschitz bound can be used to take advantage of an a priori picture of

the general shape of S. As always the model set, the set of unknown signals, and solution

framework being used in a particular situation determine whether it is possible to use such

information.
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3.3.5 Other Structure in S

Multi-Output

Up to this point we have concentrated on developing staticness criteria and con-

straints for single-output S (Section 3.3.4 is the exception that can be applied without

change for a general number of outputs). However in general the model structure described

in Section 2.3 allows for S that are collections of several single-output static functions. We

can formulate a measure of staticness between the output and inputs, or indeed several mea-

sures of staticness and/or smoothness, for each of these. Most generally we would choose

to constrain some of these measures, leaving the rest to be minimized.

This means one is potentially left with a multi-objective optimization problem.

The most common way to proceed is to create a single-objective problem by using a weighted

sum of the individual criteria. For instance, if S consists of nw SISO functions Sk, if we

weight the k’th function by Γk then the dispersion function would be

nw∑

k=1

Γk

(

‖D1P zkzk‖2
2 + ‖D1P zkwk‖2

2

)

. (3.134)

Formulation of optimization problems to generate estimates now involves choosing values

for the design variables Γ. The choice should be guided by the relative sizes of the com-

ponent functions (remember dispersion is not scale-invariant) and the relative sizes of the

contributions of the component functions in the output y. The weights can also affect how

accurate the component estimates are relative to one another. Ultimately, experience and

trial-and-error is important for choosing good values.

The second thing to point out here is that in general it is natural to model each

output of S as being a function of only a subset of the entire set of inputs to S. For instance

in Example 2.1 there were three functions to identify, two spring force characteristics, k1(x1−
x2) and k2(x2), and a friction force fx(ẋ2). S, being the union of these functions, has inputs

x1 − x2, x2, and ẋ2, but the first output depends only on x1 − x2, the second only on x2,

and the third only on ẋ2. These are modeling considerations, based on a priori knowledge

about the system under investigation.

It is easy to take this type of model structure into account. Simply formulate

the staticness measures to include the relevant inputs only. Given vectors z1, z2, and

w, it is a stronger statement to say that the relationship from z1 to w is static, than to

say the relationship from (z1, z2) to w is static. For one, if z1 has repeated values, it is
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possible that (z1, z2) does not (recall the discussion at the beginning of Section 3.3). If a

priori considerations dictate that an output does not depend on some signals, using this

information leads to more effective staticness measures, and presumably then, better signal

estimates.

Similar ideas hold for smoothness considerations. In Section 3.3.4 we showed how

a Lipschitz condition on S translates into the set of constraints (3.126), one for each pair of

input points in the scatter plot. When S is multi-output, composed of the n single-output

functions S1(·), . . . ,Sn(·), we can alternatively prescribe a different Lipschitz constant for

each output:

|Sk(x) − Sk(y)| ≤ γk‖x− y‖D k = 1..n, ∀x, y (3.135)

or in terms of z and w,

|wk(t) − wk(s)| ≤ γk‖z(t) − z(s)‖2 k = 1..n, ∀s, t ∈ T. (3.136)

When an output depends on only a subset of the inputs we again modify the

constraint accordingly. The Lipschitz condition becomes

|wk(t) − wk(s)| ≤ γk‖z[k](t) − z[k](s)‖2 k = 1..n, ∀s, t ∈ T, (3.137)

where we use the notation z[k] to mean the subset of the nz scalar signals comprising z

which the k’th output depends on. This is a stronger, more specialized condition, than

(3.136). When S is “diagonal”, that is a collection of n SISO functions where the k’th

output depends on only the k’th input, this set of Lipschitz conditions becomes

|wk(t) − wk(s)| ≤ γk|zk(t) − zk(s)| k = 1..n, ∀s, t ∈ T. (3.138)

Repeated Elements

Sometimes there is reason to believe that in a given system, the same static function

shows up in more than one place, even though the function itself is not known. For instance

a device may contain multiple copies of essentially identical parts, manufactured in the

same way. Or the same fundamental physical phenomenon acts in multiple places. This

leads to model sets with repeated unknown elements. In this case it is desirable to both

constrain estimates of such elements to be identical, and also to take advantage of this extra

knowledge during identification.
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This is easy to handle in the current framework, with any of the staticness or

smoothness measures presented. Suppose S contains two SISO sub-functions, w1 = S1(z1)

and w2 = S2(z2). A dispersion function which enforces that both are static, and equal, is,

simply,

J (




z1

z2



 ,




w1

w2



), (3.139)

that is, just collect the two input-output records into one, and proceed as before. This

simply tests whether the union of (z1, w1) with (z2, w2) is consistent as an input-output

data record of a static operator.

3.4 Stochastic Criteria

As discussed in Chapter 3, the process of estimating z and w involves the si-

multaneous estimation of the disturbance signal e which accounts for undermodeling and

measurement error in the models we consider. It is important to add appropriate constraints

on the disturbance estimates that reflect the characteristics of these unmodeled influences.

If not, any optimization procedure will use this degree of freedom to explain the part of the

output measurement equation (3.3a) that depends on w, and to the extent that this occurs,

the estimates of z and w will be thrown off. This will happen to some extent even when we

do endeavor to constrain the problem, but we can try to minimize this effect.

What are relevant properties of e to consider? Probably the most important is

its size, as measured in some norm. The size of the estimated noise should not be larger

than the size of a typical realization of the noise signal during any given experiment. More

generally we assume that e is generated by a random process (as discussed in Section 2.1)

and require that estimates are consistent with the statistical properties of such a process. In

the language of statistics, we can pose various hypothesis tests that we require any estimates

to pass. If the estimate does not pass a given hypothesis test for the assumed distribution,

then we decide the estimate is not consistent with having been generated by such a random

process, and throw it out. Some tests to consider are those associated with the estimate’s

mean, variance, whiteness, and (un)correlation with other signals in the problem.

These criteria and tests can be used to constrain the search for estimates of un-

known signals. As always, some of these tests are more or less amenable to different solution

frameworks. Even if not included in the optimization problem, another way these tests can
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be useful is to check the estimates that are computed. If they are not consistent with some

of the statistical assumptions then perhaps constraints can be added to the problem, or the

solution method can be modified, to arrive at better estimates.

The question arises, how does one discover the statistical properties of e? This

is a hard question which we aren’t prepared to answer systematically here, however can

make a few comments. If it is possible, one experiment to perform is to observe the output

of the device under test in some sort of steady-state experiment, for instance when the

controllable inputs are held at zero or a constant value. In this case variability in the

output may reflect the effect of unmodeled disturbances and measurement errors, and thus

reveal something about their nature. Oftentimes it is reasonable to treat the noise process

as though it satisfies certain assumptions. For instance that is is white, zero mean, or that

it is uncorrelated with the input signal u. Often something is known about the nature of

certain types of noise. For instance for position measurements that are generated with a

potentiometer device it may be reasonable to assume the measurement error is normally

distributed, whereas if the measurement is generated by an optical encoder then the error

might be more accurately described by a uniform distribution. Finally, there is always

trial and error; if one set of assumptions doesn’t seem to produce good results, try another.

For instance one can repeat the estimation process using various noise level constraints.

3.4.1 Mean

The sample mean of a vector v of length L is defined

v :=
1

L

L∑

k=1

v(k). (3.140)

If we believe the i’th disturbance signal ei is a zero-mean process, then the sample mean of

an estimate of it should be close to zero. This leads to constraints such as

−δi ≤ ei ≤ δi, i = 1..ne, (3.141)

or with the parametrization of the consistent e as in (3.12b),

−δi ≤
1

L

L∑

k=1

(e0i (k) +Ke,i(k)f) ≤ δi. (3.142)

Since the sample mean of a vector is a linear function of the components, these are 2ne

linear inequality constraints among the elements of e or the decision variables f . Another
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possibility is to simply require the sample mean to equal zero. Linear equality and inequality

constraints are typically easy for solvers to handle.

To make “close to zero” more precise and provide some guidance in choosing the

constraint levels we can turn to standard statistical and decision theory considerations. For

V a scalar IID stochastic process with zero mean and variance σ2, its length-L sample mean

V (a random variable) has expectation equal to zero and variance

Var(V ) =
σ2

L
. (3.143)

Thus for a given interval about zero the sample mean falls inside it with greater and greater

probability as L increases. In the Gaussian case where V (t) ∼ N (0, σ2), ∀t, the sample

mean is itself Gaussian:

V ∼ N (0,
σ2

L
). (3.144)

When the V (t) are not necessarily Gaussian, as long as they are independent the central

limit theorem tells us the distribution of the sample mean approaches this same Gaussian

distribution as the sample length grows. In our problems L is typically large and we can

assume the sample mean is well approximated by (3.144). Knowing the distribution of the

sample mean, for a given confidence level 0 ≤ γ ≤ 1 one can compute a confidence interval

such that 100γ percent of the length-L realizations of V have a sample mean within this

interval. A common choice is

I = [−δ, δ], δ =
σ√
L
z0.5+γ/2, (3.145)

where zα is defined to be the α’th percentile of the unit normal distribution. That is to

say, if Z is unit normally distributed, Z ∼ N (0, 1), then P (Z < zσ) = α. Note that

P (|Z| < z0.5+γ/2) = γ.

Applying this to the problem at hand, suppose there is reason to believe the i’th

disturbance ei is IID, zero mean, with a given variance. Then given γ a δi can be computed

such that the sample mean of realizations of such a process would fall within the interval

(3.141) 100γ percent of the time. Given a length-L vector êi, this provides a way to evaluate

the hypothesis “is the sample mean of êi consistent with that of the assumed distribution

of the i’th disturbance?” Namely if (3.141) is satisfied, then we accept the hypothesis.

Another possibility, which is useful when it’s not possible or easy to derive the

distribution of the sample mean based on the distribution of the underlying process, is to

use the Chebyshev inequality.
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Fact 3.13 (Chebyshev inequality) Let X be a random variable with mean mX and

variance σ2. Then for any δ > 0,

P (|X −mX | ≥ δ) ≤ σ2

δ2
.

Letting X be the sample mean of the zero-mean process V and using (3.143), we have

P (V 6∈ [−δ, δ]) < σ2

Lδ2
. (3.146)

This provides another way to choose the interval δ in order to guarantee a given confidence

level γ; set σ2/(Lδ2) = γ.

These results can be used to replace the choosing of δi for the sample mean con-

straint with the choosing of a confidence level, a more natural and meaningful number.

It is reasonable to require that ei meets this, for large γ. For example if realizations of

the assumed distribution associated with ei satisfy (3.141) 99% of the time, then it seems

reasonable to require estimates ei to also fall within the interval.

Any of these results can be easily adapted to a process with nonzero mean.

3.4.2 Variance

The variance of the noise signal, which is essentially the size of the noise estimates

as measured by the l2 norm, is perhaps the most important stochastic criteria to constrain.

One possibility is to follow the same approach of imposing constraints which en-

force that the estimates are consistent with a distribution of a given variance.

A natural estimator of the variance of a stochastic process given a realization of

the process is the sample variance. The sample variance of a vector v of length L is defined

as

S2(v) :=
1

L

L∑

k=1

(v(k) − v)2, (3.147)

where v is the sample mean as defined above.

Now if V is a scalar IID stochastic process with variance σ2, the expectation of its

length-L sample variance S2(V ) is (nearly) equal to σ2:

L

L− 1
E[S2(V )] = E

[

1

L− 1

L∑

k=1

(v(k) − v)2

]

= σ2. (3.148)
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(Some authors define the sample variance to be slightly different, as suggested by the middle

expression, which is an unbiased estimator of variance. At any rate the two are essentially

equal for large L.)

The variance of the sample variance is

Var(S2(V )) =
(L− 1)[(L− 1)µ4 − (L− 3)µ2

2]

L3
, (3.149)

where µn is the n’th central moment of V (t), and which simplifies to

Var(S2(V )) =
2σ4(L− 1)

L2
(3.150)

when V is Gaussian, V (t) ∼ N (0, σ2).

As we argued for the mean in the previous section, since the expectation of the

sample variance equals the variance of the process, and its variance decreases with increasing

sample length, it makes sense to confine the sample variance of the estimate of ei to smaller

and smaller intervals about the assumed variance of ei as the data record length L increases.

Analogously to (3.141), this results in optimization constraints of the form

S2(e1) ∈ [σ2
i − δi, σ

2
i + δi], (3.151)

where the choice of δi results in a certain confidence level.

For help choosing meaningful confidence intervals the following points may be

useful. If V is IID and normal, then the scaled sample variance has a chi-squared distribution

with L− 1 degrees of freedom:
L

σ2
S2(V ) ∼ χ2

L−1. (3.152)

If V is zero-mean then the sample variance becomes

S2(v) =
1

L

L∑

k=1

v2(k), (3.153)

which is the sample mean of V 2, and if the process is IID (but not necessarily normal) then

applying the central limit theorem one can derive the limit distribution of S2 as L→ ∞ in

terms of the mean and variance of V 2. Another alternative is to again use the Chebyshev

inequality, taking advantage of the expression for the variance of the sample variance as in

(3.149) or (3.150).
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So we come up with bounds on the sample variance of the disturbance estimates

ei. Looking at the definition (3.147), the sample variance of ei is essentially the 2-norm of

ei. Indeed if we assume the sample mean is small, as is often the case, we have

S2(ei) ∼=
1

L
‖ei‖2

2 . (3.154)

We often use ‖e‖2
2 in place of S2(e) to formulate the problems.

In either case, whether we use the sample variance S2(ei) or 2-norm ‖ei‖2, these

considerations result in inequality constraints on convex quadratic functions of ei. Or if we

substitute the feasible-solution parametrization (3.12b), convex quadratic functions of f .

These are readily handled in various solver software.

Practically speaking, when we include these constraints in an optimization problem

and solve, the lower-bound constraints on the size of the disturbance estimates are typically

not active. In problems where the size of e is constrained, the solver usually uses all of the e

it can in order to minimize the objective, and the size of the estimated disturbance achieves

the upper constraint bound. We can usually drop the lower bound, and (3.151) becomes

S2(ei) ≤ σ2
i + δi. (3.155)

Having motivated these sample variance or two-norm bounds and the appropriate

constraint levels to use with statistical considerations, let us now comment that at times it

is easier in practice to essentially ignore these guidelines, and simply choose a bound, and

use a constraint such as

‖ei‖2
2 ≤ αi. (3.156)

One possibility is to try the problem with several different choices of bound, and then decide

which seem to produce the best results. This allows one to avoid getting into some of the

details of the assumed distribution of the disturbance process and its variance.

The variance of a signal is one measure of its “spread”. Other types of constraints

that are related to the sample spread of the estimated disturbance are also possible. For

instance if the disturbance signal e is assumed to be normally distributed on an interval I,

then we might add the constraints

e(t) ∈ I, t = 1..L. (3.157)

This could be in place of, or in addition to, the variance constraints.
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Let’s pause for a moment here and look at some bigger-picture ideas. Many if not

most traditional system identification methods fit models by essentially optimizing the error

between the output as predicted in some way by the candidate model, and the measured

output, to be as close to zero as possible. For instance, problems that boil down to linear

regression do this, as do most parameter estimation approaches. Now if the measured

output includes some noise then these methods will attempt to fit that noise, to the extent

possible within the model structure chosen, so that for the particular data used the output

is explained in terms of the input, along with as little noise as possible. This is not really

what we intend to happen for then the model only “works” for that particular disturbance

realization. What saves us of course is that usually the model structure is parametrized

with few enough parameters that only models with smooth behavior are allowed, and the

noise is averaged out instead of fitted. However if there are too many parameters then you

do fit then noise. This is known as the bias/variance tradeoff. It is up to the designer to

choose the right model parameterization, and number of parameters, so that this tradeoff

is optimized in the final model. It is sometimes not clear though how many parameters are

needed apriori, and a trial and error process is often involved to get it right.

If something is known about the level of noise involved in the problem then it may

make more sense, and make the problem easier from an engineering standpoint, to simply

add constraints to the problem so that the mismatch between the model’s predictive power

and the measured output does not exceed known limits on the size of the noise. But don’t

try to optimize this mismatch away to zero. Use the extra degrees of freedom to optimize

other desirable model aspects (such as smoothness, consistency with prior knowledge of the

system, etc). This is arguably a more direct approach to the bias/variance tradeoff, than

to depend on the model parametrization to provide the correct level of smoothness.

3.4.3 Correlations

A common assumption is that the disturbance signals ei are generated by a process

which is independent of the past. Thus ei(t) is independent of y(s), u(s), w(s), and z(s)

for s < t. Also ei(t) is independent of ej(s) unless i = j and s = t. We may want to check

if estimates are consistent with this assumption. With the additional assumption that ei is

stationary, this would mean that ei is a white noise process. For instance if ei is IID then

it is necessarily white.
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Correlation between random variables is often used as a check on their indepen-

dence. A necessary condition that two random variables X and Y are independent is that

they are uncorrelated, namely

E[(X − µx)(Y − µy)] = 0. (3.158)

In fact, correlation measures the degree of linear dependence. It can be argued that higher-

order correlation and other statistics are useful in detecting nonlinear relationships between

two signals [4] [10]; we will not consider those here. In the case of normal random variables,

uncorrelated is equivalent to independent.

Given samples of two random variables, it is straightforward to form estimates and

tests of their correlation or lack thereof. Therefore a useful check or constraint to apply to

estimated disturbance signals involves their correlation with other signals in the problem.

The assumption that ei is white also involves checking correlations.

From any probability or statistics book: if X and Y are two scalar discrete-time

stationary stochastic processes, their covariance function is defined

γxy(h) := E[(X(t+ h) − µx)(Y (t) − µy)], (3.159)

where µx is the expected value of X(t). Due to stationarity E[X(t)] is independent of t, as

is γxy(h). The argument h is known as the lag. When X and Y are the same process this

function is called the autocovariance, γx(·). A normalized version of the covariance is the

correlation function, defined

ρxy(h) :=
γxy(h)

√
γx(0)γy(0)

. (3.160)

Fun facts:

• The variance of X is found in the 0’th lag of its autocovariance function:

Var(X) = γx(0). (3.161)

• The magnitude of the correlation is bounded by 1 for all lags:

−1 ≤ ρxy(h) ≤ 1 ∀h. (3.162)

• A stationary random process X is said to be white if γx(h) = 0 for h 6= 0.
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For two length-L vectors x = (x(1), . . . , x(L)) and y = (y(1), . . . , y(L)), their

sample covariance is defined for h = 0, 1, . . . , L− 1 as

γ̂xy(h) :=
1

L

L−h∑

t=1

(x(t+ h) − x)(y(t) − y), (3.163)

and for negative lags γ̂xy(h) := γ̂yx(−h). As before x is the sample mean of x. The sample

autocovariance of x is the sample covariance of x with itself,

γ̂x(h) :=
1

L

L−h∑

t=1

(x(t+ h) − x)(x(t) − x). (3.164)

Note γ̂x(0) is the sample variance of x. The sample correlation is

ρ̂xy(h) :=
γ̂xy(h)

√
γ̂x(0)γ̂y(0)

. (3.165)

The sample autocorrelation reduces to

ρ̂x(h) :=
γ̂x(h)

γ̂x(0)
. (3.166)

The commonly used tests for correlation and whiteness are based on the large-

sample asymptotic distribution of the sample covariance and correlation functions under

certain assumptions [37] [25] [31]. Suppose X is a scalar white noise process. Then for the

sample covariance and correlation as defined above, in the limit as L grows large,







ρ̂x(1)

ρ̂x(2)
...








=
1

γ̂x(0)








γ̂x(1)

γ̂x(2)
...








d−→ N (0,
1

L
I), (3.167)

i.e. a vector composed of the nonzero lags of the sample covariance converges in distribution

to a zero-mean normal random vector with variance inversely proportional to L, i.e. in the

limit the lags of the sample covariance are IID zero mean normal, with decreasing variance

as L grows. Similarly if Y is another scalar stationary stochastic process independent of X,

then 

















...

ρ̂xy(−2)

ρ̂xy(−1)

ρ̂xy(0)

ρ̂xy(1)

ρ̂xy(2)
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=
1

√
γ̂x(0)γ̂y(0)



















...

γ̂xy(−2)

γ̂xy(−1)

γ̂xy(0)

γ̂xy(1)

γ̂xy(2)
...



















d−→ N (0,
1

L
I) (3.168)
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See [37] for proof of these asymptotic distributions, where it is required that Y is a “linear

process”.

With these asymptotic sample distributions in hand several tests for whiteness

and independence of ei with other signals can be applied. In the following let e represent a

disturbance signal, and v any “other signal” whose correlation with e is being investigated.

Some possibilities are

1. Test individual lags. Since (in the limit)

γ̂e(h)

γ̂e(0)
∼ N (0, L−1), h 6= 0, (3.169)

a hypothesis test that the lag-h autocorrelation statistic of e (h 6= 0) is consistent

with white noise, with confidence level γ, is to reject e unless

|γ̂e(h)|
γ̂e(0)

≤ 1√
L
z0.5+γ/2. (3.170)

This inequality can be equivalently expressed in the form of two constraints that are

quadratic in e,

γ̂e(h) ≤
1√
L
γ̂e(0) z0.5+γ/2 and − γ̂e(h) ≤

1√
L
γ̂e(0) z0.5+γ/2 (3.171)

Similarly, a hypothesis test that the lag-h correlation statistic of e and v is consistent

with that lag being uncorrelated is

|γ̂ev(h)|
√

γ̂e(0)γ̂v(0)
≤ 1√

L
z0.5+γ/2 (3.172)

or equivalently

γ̂ev(h) ≤
1√
L

√

γ̂e(0)γ̂v(0) z0.5+γ/2 and − γ̂ev(h) ≤
1√
L

√

γ̂e(0)γ̂v(0) z0.5+γ/2

(3.173)

If more than one lag is to be tested, the confidence level should be adjusted. Recall the

probability that M independent events, each of probability β, all occur, is βM . Thus

if a total of M lags are to be tested, for an overall confidence level γ, the individual

lags should be tested at level β = γ1/M .

2. Test sums of lags.

Since the autocorrelation estimates (3.166) are asymptotically IID normal with mean

zero and variance L−1 for h 6= 0, the sample mean of this quantity over M lags is
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asymptotically normal with zero mean and variance (LM)−1. This motivates the

level-γ test for whiteness

1

M

∣
∣
∣
∣
∣

M∑

k=1

γ̂e(hk)

∣
∣
∣
∣
∣
≤ 1√

LM
γ̂e(0) z0.5+γ/2, (3.174)

or equivalently

1

M

M∑

k=1

γ̂e(hk) ≤
1√
LM

γ̂e(0) z0.5+γ/2, − 1

M

M∑

k=1

γ̂e(hk) ≤
1√
LM

γ̂e(0) z0.5+γ/2. (3.175)

Similarly for cross-correlation estimates,

1

M

∣
∣
∣
∣
∣

M∑

k=1

γ̂ev(hk)

∣
∣
∣
∣
∣
≤ 1√

LM

√

γ̂e(0)γ̂v(0) z0.5+γ/2, (3.176)

or

1

M

M∑

k=1

γ̂ev(hk) ≤
1√
LM

√

γ̂e(0)γ̂v(0) z0.5+γ/2, − 1

M

M∑

k=1

γ̂ev(hk) ≤
1√
LM

√

γ̂e(0)γ̂v(0) z0.5+γ/2.

(3.177)

Note that these formulations includes tests of single lags as a special case, when the

sum is over just one lag.

3. Test sums of squares of lags.

An approach advocated in [25] is to use the sum of squares of a number of lags of

the autocorrelation to form a test for whiteness. In the limit, this is the sum of

the squares of independent normal random variables, which results in a chi-squared

random variable, √
L

γ̂e(0)

M∑

k=1

γ̂e(hk)
d−→ χ2

M , (3.178)

and this can be used as the basis of a hypothesis test, this time based on the chi-

squared distribution.

For a disturbance estimate êi, (3.170), (3.174), and (3.178) can be used to test

its whiteness. Any or all may be included in the estimation procedure. The summed

versions (3.174) and (3.178) have the advantage of taking several lags into account with

a single constraint with essentially no added complexity, while testing the individual lags

as in (3.170) gives finer control. The expressions (3.172) and (3.176) can be used to test
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correlation of ei with other signals in the problem. For instance if we can assume the

disturbance is independent of the past, as is often the case, then the expectation of γ̂eiv(h)

should be zero for h > 0 and v any component of y, u, z, or w. Sometimes the assumption

holds for h < 0 as well, for example ei(t) is independent of uj(s) for all s, t, in which case

we test that γ̂eiuj (h) is small for h < 0 as well. We need to be careful here, where feedback

loops in the system can mean that certain signals are dependent on past values of the

disturbance.

What about properties of these types of constraints, and the tractability of includ-

ing them in convex programming problems? Looking at (3.164), the sample autocovariance

is nonconvex quadratic in the elements of x, while the sample covariance (3.163) is bilin-

ear in the elements of x and y. Thus tests like (3.171) are nonconvex quadratic in e, or

nonconvex quadratic in f when the feasible parametrization of Section 3.2.1 is used. The

cross-correlation test (3.173), thinking of both e and v as unknown quantities to be es-

timated parametrized as in Section 3.2.1, are nearly quadratic if not for the square root

term on the right hand sides. In practice if we impose variance constraints on e such as

(3.155) or (3.156), and can assume the estimate achieves the upper bound, then we can

replace γ̂e(0) in these expressions with that value. A greater simplification happens when

testing the correlation of ei with a signal v that is known. In this case the sample cor-

relation γ̂eiv(h) is a linear function of f and γ̂v(0) is a fixed deterministic quantity, and

the tests (3.171) and (3.175) become pairs of linear inequality constraints in f . Of course

linear inequality constraints are easily handled in convex programming problems. With the

nonconvex quadratic constraints that appear otherwise we can either attempt to solve the

nonconvex programming problem directly, look for convex approximations and relaxations,

or be content to use them for a posteriori checks on estimate quality.
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Chapter 4

Formulations

In previous chapters we laid out a problem involving estimation of unknown sig-

nals in an interconnected model structure, one involving unknown static functions. This

particular problem was motivated by a system identification task, where unknown static

operators such as these are to be estimated. A general approach to producing estimates

was presented in Chapter 3, which comes down to formulating an optimization program

and estimating certain unknown signals in the problem based on qualities good estimates

should posses. Sections 3.3 and 3.4 introduced a number of quantities that one may want

to use in order to achieve this. Recall that these measure and constrain various staticness,

smoothness, and stochastic qualities of estimates. The goal has been to find measures which

accurately capture qualities of interest, and at the same time are simple enough to be usable

in a computational setting. In this chapter we look at specific formulations composed of

these elements, and issues involved in optimizing them. Examples are used to illustrate

these choices and to show typical results.

4.1 Assembling Programs

4.1.1 Review Of Elements

As a review, and for the sake of having a reference with consistent notation, many

of the optimization elements from the previous chapter that we will be using here are listed

in Table 4.1. Most of the elements can be used either as objectives, or as constraints by

picking an appropriate constraint level; an appropriate expression for each is shown.
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elmnt objective form constraint form

J (Jw) min

nw∑

k=1

(Γ2
w,k‖D1P zkwk‖2

2 + Γ2
z,k‖D1P zkzk‖2

2) Γ2
w,k‖D1P zkwk‖2

2 + Γ2
z,k‖D1P zkzk‖2

2 ≤ 1, k = 1..nw

J2 (J2w) min

nw∑

k=1

(Γ2
w,k‖D2P zkwk‖2

2 + Γ2
z,k‖D2P zkzk‖2

2) Γ2
w,k‖D2P zkwk‖2

2 + Γ2
z,k‖D2P zkzk‖2

2 ≤ 1, k = 1..nw

JA (JTV) min

nw∑

k=1

L−1∑

t=1

(
(Γz,kD

1
tP

zkzk)
2 + (Γw,kD

1
tP

zkwk)
2
)1/2

L−1∑

t=1

(
(Γz,kD

1
tP

zkzk)
2 + (Γw,kD

1
tP

zkwk)
2
)1/2 ≤ 1, k = 1..nw

‖w‖2 min

nw∑

k=1

Γw,k‖wk‖2
2 ‖wk‖2

2 ≤ α2
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We stick to staticness and smoothness measures for SISO operators. We generalize

this to S that may be collections of several SISO Sk, k = 1..nw. To form staticness objectives

out of the SISO measures we take weighted combinations of the measures for individual Sk,

and to use them as constraints we pick individual constraint levels for each of the Sk;

this was previously mentioned in Section 3.3.5. In Table 4.1 the weights, or individual

constraints, are specified by the design variables Γw and Γz; these also allow for a different

relative weighting of the w- and z-parts of the expressions. Note that the Jw, J2w, and JTV

measures can be obtained from J , J2, and JA respectively, by setting Γz = 0. Similarly,

the Lipschitz constraint level for Sk is specified by choice of λk.

The size of the constraint on the noise level ‖ek‖2 is represented in the table by

αe,k. Also perhaps more naturally we can work in terms of a weighting Γe,k, related to αe,k

as α2
e,k = LΓ2

e,kσ
2
e,k, where σ2

e,k is the variance of the noise process and L is the length of

the (scalar) signal ek. For instance by specifying Γe,k = 1, or equivalently α2
e,k = Lσ2

e,k, and

assuming zero-mean estimates, we are constraining the sample variance of ek equal to the

process variance (this will be a common choice). (Whether or not the process variance is

known is another question.)

At the bottom of the table, for the constraints associated with correlations between

signals, when we also use a noise level constraint like ‖e‖2 ≤ α2
e,k, it is often a good

approximation to replace γ̂e(0) with α2
e,k/L. Then when v is a known signal this lets us use

a constant for the constraint level in the optimization formulation, in place of an expression

that depends on decision variables in a nonconvex nonquadratic way.

Some of the elements are more naturally used as either an objective or constraint.

For instance since for a static operator the dispersion J decreases with increasing data

density, it is hard to choose a meaningful constraint level independent of the data record,

and thus it is often easier to minimize this property. On the other hand arclength and

total variation are properties of the function independent of the data, and they don’t de-

crease with increasing density, and so it makes sense to constrain JA or JTV if there is

apriori knowledge about the total variation or arclength of S. Lipschitz criteria are usually

considered as constraints, however in principle one could minimize the maximum Lipschitz

constant of the scatter plot (if z is fixed then this is a convex problem).

Regarding the noise level, ‖e‖2. In our experience it tends to be better, from

a usability standpoint in terms of how easy it is to find formulations that produce good

estimates, and perhaps makes more sense as well, to constrain this quantity, as opposed
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to minimizing it. This may be counterintuitive to those familiar with more “traditional”

methods in system identification such as maximum-likelihood parameter estimation, or basic

least-squares fitting. A canonical description, in a stochastic setting, of what is happening

in these methods is that given a parametrized model set which includes a noise model,

parameter and noise estimates are sought which are consistent with experimental input-

output data. It is then argued that the best parameter estimate is the one associated with

the smallest noise estimate, in other words the noise estimate is indeed explicitly minimized,

the reasoning being that for noise that is assumed to be e.g. a Gaussian process, then smaller

estimates are more likely as realizations of the process.

An issue that is often raised here is known as the bias-variance problem (discussed

previously in Section 1.4. Although a low-variance noise is more likely, the actual realiza-

tion during a given experiment does not necessarily have small size. In fact, the higher the

variance of the process, the more unlikely that the realization will have a sample variance

smaller than a given number. What ends up happening in maximum likelihood parameter

estimation is that any flexibility in the parametrization is used to minimize the size of the

estimated noise signal. In a given experiment, to the extent that this level gets minimized

below that of the actual experiment noise this is undesirable, since now the actual noise

is being partly explained using the parameters of the model, and not the estimated noise

(it is “fitting the noise”). The higher the number of parameters the more this overfitting

is possible, resulting in a high-variance estimator. A more ideal formulation would be to

constrain the size of the estimated noise, and then use criteria based on other knowledge

about the problem to locate a best parameter estimate from the remaining feasible param-

eter choices. In our particular problem the number of parameters being estimated is quite

large, being on the order of the length of the data record, and therefore the noise-fitting

issue is an especially important consideration. Hence the comment that it may be more

straightforward, in producing good estimates, to constrain ‖e‖2, rather than minimize.

Any of the formulations to be posed include the linear system constraints described

in Section 3.2, and when solving we generally use the parametrization of feasible solutions

to this constraint that are described in the following sections. Finally we note once again

that for the large decision variables that the formulations use, we are limited as to what

classes of program we can actually solve. In general we look for optimization programs that

are convex, and linear or quadratic programs are ideal, including least squares problems (in-

cluding Kalman filtering) and quadratically-constrained quadratic programming (QCQP).
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Large semidefinite programming (SDP) or linear matrix inequality (LMI) problems, are also

feasible. With these we can compute approximate solutions for large possibly-nonconvex

quadratic programs (NQCQP), which can be useful for us. Other more general options are

methods for minimizing smooth functions, and finally the very general nonlinear optimizers

often involving randomized searching.

4.1.2 Fixed z vs. Free z

Whether or not the z signal depends on the decision vector f has important im-

plications for many of the staticness elements regarding convexity and other characteristics

that are important when doing optimization. In Section 3.3 we saw that many of the

staticness operators are nonconvex functions of z. For J , Jw, J2, J2w, JA, and JTV the

difficulty is the sorting (or, in higher dimensions, the triangulation) matrix, P z, which is

nonconvex, nonquadratic, and discontinuous in z (and hence P zf is discontinuous in f).

Lipschitz constraints are quadratic, but once again nonconvex, in z.

If z is measured or otherwise known with sufficient accuracy then we do not have

to estimate it and can leave it out of the decision variables of the estimation optimization

formulation. The dependence on f is then convex and benign for these staticness measures.

Otherwise we consider z as unknown. In this case the J∗ and Lipschitz constraint

functions are nonconvex and not handled by solvers that are efficient for the length of

the decision vectors we want to consider. If we could only use those staticness measures

in systems where z is fully known this would obviously impose quite a restriction on the

generality of those formulations involving those elements. Therefore approximate solution

methods or relaxations are needed for the problem we would ideally like to solve We can

list three options in this situation:

1. Settle for a formulation which uses only criteria/constraints which are “nice” functions

of f . This dramatically reduces the available options. One option still available here

can be interpreted as a Kalman smoothing operation, or as an ill-posed inversion

problem with a regularization criteria. This is minimization of the two-norm of w

subject to a two-norm constraint on e, or minimization of a weighted combination of

these.

2. Bootstrap. This is the label we use to refer to an iterative process in which each

iteration produces new estimates of the unknowns e, w, and z, which are in turn used
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to build the estimation formulation to produce the next iterate. To proceed, those

parts of the criteria/constraints you would like to use that cause them not to be nice

functions of f (usually this is the sort operation) are fixed at the current iteration’s

estimate of z, leaving an optimization problem which can be formulated as a convex

cone problem. This is then solved, producing estimates for the next iteration. More

of the staticness elements fit into such a framework, and various combinations can be

used. We have found this family of formulations often works reasonably well, and is

what we generally try first when z is fundamentally unknown.

A variation for the measures with sorting is to fix just P z, and let the remaining

dependence on z be free since it is convex.

3. Reformulate the problem as one that is not quite a convex cone problem, but can be

relaxed into one. For instance this is possible with formulations that involve crite-

ria/constraints that are quadratic, but possibly nonconvex. For these problems the

so-called S-procedure (Boyd et al. 1994) may be employed to produce bounds on

the optimal value, and quantities produced in solving this problem can be used in a

guided search for suboptimal feasible solutions to the original problem (known as pri-

malization (Goemans and Williamson 1995). Although this method produces larger

problems and so is restricted to shorter data record lengths, and once again the set

of available problem formulations is quite small since all criteria/constraints must be

quadratic, However there are three main difficulties: 1) answer are conservative and

not necessary as well as sufficient; 2) these formulations produce a bound on the op-

timal value, when what we really want to find in the current problem is estimates

(perhaps suboptimal), and are not so interested in that actual objective level; and 3)

the size of the optimization problem can grow dramatically. Initial trials have shown

that this technique has some merit.

We note that a common situation in mechanical systems is a reaction force due to

some sort of displacement. In some cases the reaction force as a function of the displacement

is a nonlinear, unknown function to be identified. Typically it is more straightforward and

practical to measure displacement than forces. If the displacement during an experiment

is recorded, but not the reaction force, then we have the situation of an unknown function

with measured input and non-measured output. For instance a common simple friction

model is one that expresses frictional force as a function of sliding velocity; velocity is often
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easier to sense than friction force. Another instance of a such a nonlinearity may be a gear

with backlash; it’s easy to monitor the angle of the two gears, but harder to monitor the

reaction force.

4.1.3 Multiple Experiments

In identifying embedded static operators it’s not hard to incorporate input/output

data from multiple experiments. In fact it’s possible to combine dissimilar model structures.

This is useful when there are data records from multiple experiments and one has reason to

use model structures for the experiments which differ but contain common static elements.

Perhaps various configurations of a physical system were tested, each containing a physical

part which is to be represented by a static function. Better estimates of common static

elements may be obtained by combining the information contained in the multiple data

records.

It may be especially important to be able to incorporate information from multiple

experiments when dealing with nonlinear systems. For instance a nonlinear system can have

multiple stable equilibria. Often a particular experiment will operate in the neighborhood

of one of these equilibria, which means the signals stay in regions near their equilibrium

values. If there are static maps to be identified this might result in some information about

the map over some portion of its domain of interest, and little information over some other

portion that corresponds to another equilibrium point. Other, separate, experiments might

provide more information about these regions, and if we can combine experiments this will

allow a more accurate identification of the map over the entire domain of interest.

The extension to multiple experiments is straightforward. Each experiment adds

its own set of unknown signals and the approach once again is to form an estimate for each

of the unknowns. Let vi denote a signal associated with experiment i. So for instance in

experiment 1 e1 and w1 may be unknown, and experiment 2 has unknowns e2, w2, and z2.

this case we are seeking to estimate the union of these, (e1, w1, e2, w2, z2).

As before the linear dynamic system associated with experiment i is a system

of linear constraints among xi
1, u

i, ei, wi, yi, and zi. Taken together they are a larger set

of equations in the collected unknowns, and as such a parametrization of the consistent

solutions in terms of a free parameter exists, just as was the case in Section 3.2 when we

were considering a single experiment. One way to get such a parametrization is to “stack”
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the parametrizations for the individual experiments as described in that section.

The criteria associated with the static operator(s) also extends easily. The situa-

tion is much the same as it was for repeated static elements in Section 3.3.5. In Section 3.3,

each of the criteria we considered for evaluating the degree of consistency of an input-output

pair (z, w) with the required properties of S is a function of the collection of input-output

pairs {(z(t), w(t))}L
t=1. The point is, the criteria do not depend on their time ordering. One

can think of the criteria as really being functions of the scatter plots associated with the

z−w records. The fundamental reason for this is that we are talking about static operators,

for which in a sense the time ordering of the input doesn’t matter.

In light of this if by performing additional experiments more input-output points

are obtained for a given static element, we should simply union those with any existing

i-o pairs, and consider the consistency of the larger set with the required properties of

S. The procedure is, first make a list of the unique elements found in the collection of

static operators S i. For example if S1 contains two block-diagonal elements, a two-input

w1
1 = f(z1

1 , z
1
2) repeated once and a single-input w1

2 = g(z1
3) repeated twice, and S2 consists

of one block-diagonal element w2
1 = g(z2

1) where g(·) is the same function as in experiment

1, then there are two unique elements in the unioned experiment, f and g.

Then, whether for the purpose of analyzing staticness, repeated elements, or

smoothness properties, for each unique static element we now consider the union of its

input and output from all the experiments where that element was present. Note that for

instance the first input may be measured in some experiments and unknown and to be esti-

mated in others. In any case the static operator criteria end up being functions of the free

parameter which are then constrained or minimized in the process of computing estimates.

The criteria for the stochastic properties of the estimates of noise and disturbance

signals also extend to multiple experiments. The noise signals from each of the experiments

will have an assumed joint probability distribution with the other signals involved in the

experiments, and these provide optimization criteria in the ways described in Section 3.4. In

particular the stochastic signals from one experiment will usually be assumed statistically

independent of signals in different experiments.

To summarize it’s straightforward to incorporate information from multiple ex-

periments to identify static model components. The main drawback to using more and

more experiments is that since there are more unknowns and constraints the size of the

optimization problem grows. This becomes the limiting factor.
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4.2 Example: Bungee

Consider a mass m suspended by an elastic cord from a point whose vertical

position u we can control (the upward direction corresponds to increasing value of position).

A noisy measurement y = x+e1 of the vertical position x of the mass is available. The noise

is IID zero mean normal with variance σ2
e1

. The model includes a gravity force Fg = −mg,
viscous damping c on the motion of the mass, and a restoring force due to stretch in the cord.

The restoring force Fr = k(u−x) is a nonlinear function of the length u−x of the cord; when

the cord is stretched it acts as a hardening spring after an initial linear elasticity regime,

and when the cord is slack it provides no restoring force. Finally there is an acceleration

disturbance e2 with variance σ2
e2

. Discrete-time equations of motion come from discretizing

the second-order continuous-time ODE using Euler’s method (x1 := x, x2 := ẋ) with sample

time T = .05 seconds. They are

x1(t+ T ) = x1(t) + Tx2(t) (4.1)

x2(t+ T ) = x2(t) + T [−cx2(t) + w(t) + e2(t)] (4.2)

y(t) = x1(t) + e1(t) (4.3)

w(t) = k(z(t)) − g =: ke(z(t)) (4.4)

z(t) = u(t) − x1(t), (4.5)

where z and w are the input and output of ke(·), respectively, and the “effective” restoring

force ke(·) includes gravity. Note that z is nearly known since u−y = z−e1 and presumably

the level of the noise signal e1 is low. However the restoring force w is not measured; the

main problem is to estimate this quantity.

Following the steps laid out above, the first is to collect input-output data (ȳ, ū).

For this example we simulate input-output data with the input u a lowpass-filtered uniformly

distributed white noise, e a Gaussian white noise, and initial displacement x = −8. We

generated data for three different noise levels, σe ∈ {0.05, 0.2, 1}, in order to see the effect

of noise on the problem; there is a common unit-variance noise for the three cases, which is

then scaled by σe. All other details of the simulation are held fixed throughout. The values

of e, w, and z achieved during the simulation are similarly notated as ē, w̄, and z̄.

Figure 4.1 shows 400 samples of typical simulated signals, for the σe = 0.2 noise

level. Note that the most negative the w signal ever gets is 9.8, when the cord is slack and

force on the mass is due to gravity alone. The last panel is a scatter plot of w versus z; this
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Figure 4.1: Typical simulation data for the bungee example.

is where the function w = ke(z) was sampled by this data record. This shows the shape

of the nonlinearity; on it can be found the length when the cord is taut and not stretched

(10), when it transitions from a linear to a cubic hardening spring (15), and the constant

force due to gravity (-9.8).

Using this data along with knowledge of the linear system, the next step is to com-

pute a parametrization of the consistent solutions (ef , wf , zf ), with f the free parameter.

We follow the ideas in Sections 3.2.3 and 3.2.4 to find a parametrization such as (3.12).

Next we assemble various criteria such as those in Table 4.1 for estimating w and

z, and solve. To get started we consider a formulation in which the objective is to minimize

the dispersion J of the ẑ, ŵ estimates, while constraining the norm ‖ê‖2 of the estimated

noise to some value near its assumed variance. This formulation is among the simplest that

makes use of one of the staticness criteria, and tends to gracefully accommodate a wide

variety of situations.

As z, the cord length, is not fixed, i.e. zf is indeed a function of the decision variable

f , we look to one of the solution approaches described in Section 4.1.2. In this problem,

with J involving the sort operator, the only choice described there which is applicable is
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Figure 4.2: Estimated e, w, and z signals using 400 points, for three noise levels.

the bootstrapping method. Namely, at iteration k fix P = P zf(k)

, and solve

f (k+1) =
argmin

f
Γ2

w‖D1Pzf‖2 + Γ2
z‖D1Pwf‖2

subject to 1
L‖ef‖2

2 ≤ Γe σ
2
e .

(4.6)

This involves choosing an initial value for f (0). Here Γe is a design variable used to choose

the noise constraint relative to the actual simulation noise variance σ2
e . Other user choices

are Γz, Γw, and what portion of the data set to use. We will use the first L samples of the

data sets, where L will vary depending on the point being illustrated. To compute solutions

we use SeDuMi [36], an efficient solver for convex self-dual cone problems, including (4.6)

which is a quadratically-constrained quadratic program (QCQP).

Figure 4.2 shows three sets of estimates of the e, w, and z signals computed using

the first 400 data points, each set corresponding to one of the three simulation noise levels.

These use Γe = Γw = Γz = 1 for design weights. In particular, this means the size of the

estimated noise is constrained to be equal to the variance of the process that generated

the noise. These estimates are the eighth iterate of the bootstrap procedure. The initial

(zero’th) iterate of the decision variable, f (0), was taken to be zero (and so the initial

estimates ŵ(0), etc. are the particular solutions w0, etc, as described in Section 3.2). In
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Figure 4.3: Scatter plots of estimated w and z, for three noise levels and different amounts
of data.

this figure the estimates, including those of the noise signal, appear fairly accurate, except

perhaps for the estimate of w using the data with the highest noise level. In Figure 4.3 are

scatter plots of ŵ vs ẑ, showing, for each of the three noise levels, estimates using 100 data

points, 400 points, and 2000 points.

First of all, these indicate that the optimization problem we have formulated is

doing a reasonable thing. From the estimates, and especially from the better ones, we get

a fairly clear picture of the shape of the nonlinearity. Further, as we expect, the estimates

get progressively better when there is less noise in the data. However the trend versus

data record size is not as clear. In this example estimates improve greatly when using 400

points as opposed to 100, but then for the even longer record they seem to not be as good.

Estimates for some other data lengths are shown in the top panel of Figure 4.4, this time

for the σe = 0.2 data record only. Speaking roughly, estimates tend to improve with larger

data lengths here until around L = 400 or L = 800, but then they become worse again.

Let’s take a closer look at what’s happening during the bootstrap iteration. Fig-

ure 4.5 shows the estimates after five of the iterates, using 800 points of the record from the

σe = 0.2 data set. Namely they are the estimates corresponding to f (k) after 1, 2, 3, 5, and
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iterate J achieved

0 37.45
1 632.31
2 13.87
3 5.08
4 4.14
5 4.70
6 4.84
7 5.14
8 4.72

Table 4.2: Dispersion objective for bootstrap iterates (L = 800, σe = 0.2)

8 iterates. We see the first iterate is very cloudy, wile the second is a vast improvement.

This iterate produces a relatively “noisy” or “fuzzy” scatter plot, with lots of high-frequency

jitter, as compared to the later estimates. The later iterates could be characterized as get-

ting smoother, but progressively more biased, in the sense that the average level of w over

windowed portions of the z axis are farther from the true function. The estimated scatter

plot sort of “meanders”. The dispersion objectives that each of the iterates achieves is

shown in Table 4.2. Initial reductions of dispersion are large, followed by a lower level of

bouncing around a smaller cost. Since we have the luxury of knowing the true signals,

we can compute their dispersion cost: it is 3.54. We should note that the variance of the

realization of the noise in this experiment is slightly larger than the noise constraint used

in the estimation; in the estimation formulation we used α2
e = ΓeLσ

2
e = 32, whereas in

the simulation ‖ē‖2 is approximately 32.4044. An interesting thing to try is to start the

bootstrap iteration at the simulation signals (set e0 = ē, w0 = w̄, z0 = z̄, and f (0) = 0), and

with the correct noise constraint for ē. With this setup, the dispersion of the first 8 iterates

is shown in Table 4.3. We see there is an initial increase in the dispersion! Later iterates

(at least the first 50) move around between 4.1 and 5.2. Finally, for the same formulation,

in Figure 4.6 we show four iterates (0,1,2,8), for each of 7 bootstrap trials starting from

random initial f , along with the trial starting from the exact simulation data. We see that

although the initial wf and zf are completely different, the bootstrap iteration converges

to nearly the same estimate in each case (and nearly the same estimate as the previous

formulation with the slightly smaller noise constraint produced). This seems to be a limit

point for the bootstrap algorithm, one which is not sensitive to initial condition. For the

original problem of minimizing dispersions subject to the noise constraint, which we are
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iterate J achieved

0 3.54
1 4.54
2 4.48
3 4.53
4 4.89
5 5.22
6 5.50
7 5.39
8 5.18

Table 4.3: Dispersion objective for bootstrap iterates (L = 800, α2
e = 32.4044, simulation

initial conditions)
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employing the bootstrap iteration to solve, we have seen that there is at least one estimate

that beats this limit. Namely the simulation is feasible, and has a smaller dispersion.

Hence the bootstrap iteration is not finding the optimal point. Our experience

with this and other examples has been that the iteration is generally seen to robustly

produce reasonable, but not optimal, estimates. The sequence of estimates produced by

the iteration is typically not monotonic in in terms of a norm such as ‖w− ŵ‖, and in later

iterates ends up “bouncing around” a little, most likely due to the highly discontinuous re-

sorting operation involved. In going from one iterate to the next the estimate may become

better in some portions of the domain of the function, and worse in others. Nevertheless

the iteration is useful as it generally improves initial estimates and these later oscillations

are relatively smaller than the initial steps of more substantial improvement. For this

particular system and simulation data, the first iterate tends to be quite inaccurate, the

second iteration makes a large improvement and suddenly the estimate looks reasonable,

and then after this subsequent iterates make smaller changes and, roughly, converges to a

fixed point. The larger the noise level, the farther out into the sequence the iterates are

still producing substantial changes.

Next let’s explore the how the choice of the weights Γw, Γz, and Γe in the problem

formulation affects results. Without loss of generality we can fix one and vary the other

two, so we choose to let Γw = 1. We are now using the first 800 points of the σe = 0.2 data,

and taking the eighth bootstrap iterate as the final estimate. In Figure 4.7 we fix Γe = 1

and show results for Γz chosen from {0, 1, 5, 10, 20}. Γz is having a modest effect here,

producing similar results for the values tried: 0, 1, 5, and 10. The nicest-looking estimates
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Figure 4.8: Scatter plots of estimates using various Γe.

correspond to the lower values. For Γz = 20 the estimates start to degrade significantly.

Note that J with Γz = 0 is Jw.

Next fix Γz = and look at the effect of Γe. Figure 4.8 shows estimates for several

different Γe chosen from {0.85, 0.95, 1, 1.1, 1.3}. Here the best estimates are with Γe = 1

or Γe = 1.1. In our experience this knob is a good way to control certain aspects of the

estimation process. As a very general rule of thumb, as the size of the noise estimate is

constrained more tightly, the estimates are fuzzier, but also less biased. Notice the estimate

with the smallest value of Γe is, well, noisy. Presumably this is because we have limited the

size of e, hence in our estimates we have to look to w to explain any noise in the output

y, hence w has more of the characteristic of noise. Conversely, as the noise constraint is

relaxed the scatter plot becomes smoother (but more biased). Now the estimation process

can use more e to explain the output, thus allowing it to find (z, w) pairs that make the

dispersion smaller. If this is the case, then the estimated noise will start to become more

correlated with y and other signals in the problem than we expect, statistically speaking.

In Figure 4.9 we show the autocorrelation ρe(h) of ê for lags 0 through 200, along with its

correlations with ȳ, ū, ŵ, and ẑ, and 95% confidence bounds (statistics says 95% of the

lags should lie within these bounds). We see that for the looser noise constraints the noise

estimate becomes highly correlated with ȳ, w̄, and z̄.

Often our experience has shown that a good value of Γe is near one, that is to

say, it is often reasonable to constrain the size of the estimated noise to be less than the

variance of the process. Sometimes we prefer slightly smaller values, say 0.95, as we have

found this to be able to produce estimates with less bias. However this choice depends
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Figure 4.9: Correlation functions of the estimates of Figure 4.8, for various Γe.

on having the variance σe of the noise process correct. Otherwise it becomes an iterative

process of trying a value, inspecting the estimates for clues as to its appropriateness, and

modifying the guess. In practice, when we are estimating a function that is not known,

we don’t have the luxury of trying different values of σe and Γe until some combination

produces estimates that match the true nonlinearity. In this example we see that the wrong

noise constraint, particularly one that is too loose, can produce scatter plot estimates that

look reasonable and smooth, yet are more biased than estimates produced with perhaps

more accurate knowledge of the noise variance level. This is why it can be important to

check the correlation of the estimated noise with other signals in the problem.

It is interesting to compare estimates made using a simpler objective criteria, and

ones using more traditional approaches to this type of problem, in order to see that the

dispersion objective is of some value. Perhaps these situations will give us an idea how hard

or easy this particular estimation problem is, and provide a reference with which to judge

the dispersion estimates.

First we consider replacing the objective of the optimization formulation, J (z, w),
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Figure 4.10: Alternative ways to compute estimates.

with the simpler criteria, ‖w‖2, the 2-norm of w. The formulation thus becomes

f =
argmin

f
‖wf‖2

subject to 1
L‖ef‖2

2 ≤ Γe σ
2
e .

(4.7)

Here the problem does not depend on the parametrization of the feasible z at all. The

estimation problem decouples into two steps of first estimating e and w, and then computing

ẑ as the signal compatible with these estimates. Since the constraints and criteria do

not depend on z in this formulation, the optimization problem is immediately convex and

quadratic in the decision variables, and no bootstrapping is necessary. As in previous

examples we use the first 800 points of the σe = 0.2 data set, with Γe = 1. The resulting

scatter plot is shown in the top panel of Figure 4.10. For purposes of comparison we

also show the previously-computed dispersion estimate. Portions of the estimated signals

are graphed in Figure 4.11, along with the dispersion estimates. These two figures also
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Figure 4.11: Alternative ways to compute estimates–signals.

show 2 other types of estimates to be explained below. We see that the results are again

reasonable, in that the trends are certainly right and the estimates appear unbiased. But

the variation of the estimated signal about the true, simulation values is much larger than

with the dispersion measure. Presumably this is because the dispersion criteria penalizes

this jumpiness, and enforces smoothness. When we check, the 2-norm of these estimates

are indeed (slightly) smaller than those of the dispersion estimate; however their dispersion

measures are much larger. In spite of the higher variance, on average the estimate is roughly

centered about the true nonlinearity, general trends are correct, and we can certainly learn

a lot about the function from this estimate. The fourth thing plotted in the top panel is

an averaged version of the 2-norm estimate; each point in this plot is an average over a

local window of the 2-norm estimate, the window size being chosen so that they contain

approximately 20 points. This filtered version of the 2-norm estimate is now comparable

to the dispersion estimate, and beats it in some regions of the z-domain. Of course this

involves an extra step, and a new decision about how much averaging is needed to reduce

noise yet retain the individual features of the function.
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Another way to form estimates is to use Kalman smoothing (KS). Remember that

most fundamentally we are solving an estimation problem involving unknown signals, a

known linear plant, and knowledge that some of the signals are related by a static operator.

Given a plant, its output, and partial knowledge of inputs, the task is to estimate the

remaining inputs. A common device used to solve this type of problem is Kalman filtering,

or in the offline setting, Kalman smoothing. Thus we may want to compare results with KS

estimates. It is an optimal solution to the problem of estimating e and w (or equivalently,

estimating the system state) when these are known to be independent white Gaussian signals

of known variance. And in practice it is often used when these assumptions are not strictly

met, as it often produces useful results. In the present situation we have the system

y = Ly







u

e

w






, (4.8)

and the job of the KS is to produce estimates ê and ŵ of e and w given Ly, input-output

data, and assumed variances for e and w. To produce the estimate ẑ of z we can then use

ẑ = Lz







u

ê

ŵ






. (4.9)

Taking advantage of the fact that we know the correct variance of the realizations of e and

w for our simulation data record, we computed the KS estimates in this way. The scatter

plot of (ẑ, ŵ) is shown in the second panel of Figure 4.10, once again accompanied by an

averaged version, and the dispersion estimate.

The results are similar to the 2-norm estimate (but with higher variance). This is

not surprising. What the KS is actually doing is computing the solution of

(ê, ŵ) = argmin
e,w

‖e+ γw‖2 subject to y = Ly







u

e

w






, (4.10)

with γ chosen according to the relative size of the variances specified for e and w. It

finds those signals with smallest 2-norm which explain the input-output data (note that

specifying the input signals is more or less equivalent to specifying a state trajectory). In

the stochastic setting this is the optimal thing to do because such signals occur with higher
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probability as the realization of a Gaussian white noise process. The contribution of KS,

besides being a computationally efficient iterative algorithm, is to quantify the optimal

tradeoff between trying to optimize both ‖e‖2 and ‖w‖2 based on their known variances,

and in the absence of other information about the problem—in this case, neglecting that

the relationship between z and w is static.

Now the family of estimates produced by (4.10) as γ varies is the same as that

produced by solving

(ê, ŵ) = argmin
e,w

‖w‖2 subject to y = Ly







u

e

w






, ‖e‖2 ≤ α (4.11)

as α varies; for every γ, there is an α such that the estimates produced by (4.10) and (4.11)

are the same (Wemhoff 1998). The 2-norm-of-w formulation whose estimate is shown in

Figure 4.10 is equivalent to (4.11), for a specific choice of α. This, then, is why the Kalman

smoother estimate and the 2-norm-of-w estimates look similar.

Another interpretation of this class of problems is that of computing an ill-posed

inversion of a linear system, namely we are inverting Ly to estimate (e, w) from knowledge

of y. Here the solution is nonunique, and in these situations a common practice is to add

regularizing constraints and criteria to make the problem well-posed. A common regular-

ization choice is a norm or smoothness consideration on the variables being solved for. In

this case minimizing ‖w‖2 while constraining ‖e‖2 ≤ α leads to the 2-norm-of-w estimate,

whereas minimizing ‖w + γe‖2 leads to the KS estimate.

In addition to using KS as an alternative to the dispersion formulation for finding

estimates, we can also compare results with a more ad-hoc approach. Looking at the

problem formulation again we see that w actually represents the acceleration of the mass.

Since we have a position measurement, why not 1) use that to compute the stretch of the

cord i.e. z and 2) differentiate twice to compute the acceleration of the mass i.e. w. We

call this the “numerical differencing” estimate. Since the position measurement is noisy,

and this noise is amplified by the numerical differentiation, to give this a fair shot the first

thing we do is to filter higher frequency noise out of the position measurement. We used a

3rd-order butterworth with cutoff at 5% of the sample frequency, which seems to produce

about the best results from among several choices of order and bandwidth. The scatter plot

of the estimates produced in this way is shown in the third panel of Figure 4.10, again with
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Figure 4.12: Estimation formulations using various staticness measures.

an averaged version and dispersion estimate. Results are similar to the 2-norm-of-w and

KS estimates, in that the estimated scatter plot has a high variance, and the averaged plot

looks pretty good.

Finally, with the same data set we compute estimates where the dispersion objec-

tive is replaced with some of the more dispersion-like objectives mentioned in Table 4.1.

Figure 4.12 shows a portion of the scatter plot estimated using the second-difference disper-

sion J2, arclength JA, and total variation JTV, along with the usual dispersion estimate.

Figure 4.12: disp1, disp2, arc, tv Each of these four has a somewhat different characteristic

than the others. The second-difference dispersion estimate meanders around more than the

first-difference dispersion; this is especially noticeable in the flat portion of the function

between z = 5 and z = 10 in this plot. The arclength and total variation, and more so with

the latter, have regions of smooth, flat estimates, with occasional jumps from one level to

another, producing a staircase effect. These estimates look especially good in the flatter re-

gions of the nonlinearity, as compared to the dispersion estimates. In general the arclength

estimate is preferable to the total variation estimate. Of the four, the arclength estimate is

the best for smaller z where the function is flatter, and the first- or second-difference disper-

sion estimates are better for larger z, where the function has a larger slope. In the bottom

panel of Figure 4.4 we plotted several arclength estimates, using different data lengths, in

order to compare to the dispersion estimates in the top panel. The same general trends are

evident here — estimates do not necessarily improve when using longer data records, and

the arclength estimates are more accurate for smaller z.

In summary the main estimation formulation we have used is to minimize disper-
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sion, while constraining the norm of the noise estimate. As z is not measured, we use the

bootstrap idea to go about solving this formulation. This approach produces reasonably

accurate estimates. One shortcoming we have found is that estimates do not necessarily im-

prove when more data is used. Another is that estimated scatter plots, although less noisy

than those produced by alternative methods such as Kalman smoothing, tend to be biased,

and can be misleading in terms of missing smaller details in the graph of the functions being

estimated. At this point it is not clear whether these shortcomings are associated with the

formulation, the solution method, or both. In this example the bootstrap method finds

estimates with a small dispersion, but they are not optimal; we saw that the simulation

signals are feasible, and have smaller dispersion. Perhaps a solution method that does a

better job of solving the optimization problem would produce better estimates.

At this point we could try more complex combinations of objectives and criteria.

For instance perhaps an objective that is a weighted sum of dispersion and ‖w‖2 would

produce estimates with the smoothness of the dispersion estimates, but less bias as is

characteristic of the 2-norm-of-w estimates. As another example, we have found for this

example that starting off with 3 bootstrap iterates using the dispersion objective, followed

by more iterations that use the second-difference dispersion objective, produces estimates

that are slightly better. Or we might try adding constraints on the correlation of e with

other signals in the problem. However, in general we find that the changes these variations

produce are small, and sometimes beneficial but not always. Perhaps more importantly,

from a usability standpoint the more complex the criteria and algorithm gets, the harder

they are to use, to get to work. In real problems we wouldn’t have the luxury of being able

to compare estimates with the true quantities to figure out which combination of elements

to use, and so it would be hard to know when to stop tweaking. The basic dispersion +

noise constraint + bootstrap approach is simple, appears to be fairly robust, and produces

reasonable estimates.

4.3 Example: ECP

For more estimation experience we consider another example. At UC Berkeley we

have in one of the educational labs a commercial product by ECP Systems (www.ecpsystems.com),

their model 220 Industrial Emulator. This is sold as a tool for education in controls, pro-

viding a testbed for experimentation in control and system identification. It consists of a
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Figure 4.13: ECP “Industrial Emulator” controls experiment.

drive motor and a load inertia which can be coupled to it with a flexible band. A picture

of such a device Figure 4.13. The product features a realtime onboard dsp controller and

software to interface with a PC.

The reason we are interested in this system is because: 1) it provides realistic

numbers for an example and 2) several static nonlinearities in the system can be considered.

These include nonlinear friction acting on both the drive and load systems, an input that

can saturate, as well as a backlash nonlinearity that can be introduced into the idler pulley

shaft by loosening a set screw. It is also a relatively nice controlled experimental setup from

which we can obtain input-output data if desired.

The motor is connected to a smaller “drive” inertia which is in turn connected to

an idler pulley by inelastic belts, whose shaft is connected to the larger load inertia by the

flexible belt. We can simplify things by grouping components connected by rigid belts into

the “drive” and “load” parts of the system. The device has two degrees of freedom can be

nominally modeled as two second-order, double integrator systems connected by a spring,

namely the drive and load systems. The configuration of the system is defined by the shaft

angles of the drive and load, θ1 and θ2 respectively (measured in radians).

When the load inertia is disconnected, i.e. the elastic band is removed, the system

reduces to a second-order double integrator system, with viscous and nonlinear damping.
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J∗ 0.0025 J2 0.032
c∗ 0.003 c2 0.003
ktka 0.23167 kL 320
kc 10/32767 r1 0.01
ke 16000/(2π) r2 0.06
ks 32 rp1 0.02
h 0.010608 sec rp2 0.03
kP 0.1
kD 0.2

Table 4.4: Constants in the ECP model.

We start with this simplified setup. The equation of motion we use is

θ̈1J∗ + θ̇1c∗ + Ψ∗(θ̇1) = TD (4.12)

or in state-space form

d

dt




θ1

θ̇1



 =




0 1

0 − 1
J∗

c∗





︸ ︷︷ ︸

Ac




θ1

θ̇1



+




0

1
J∗

ktkakc





︸ ︷︷ ︸

Bc

u−




0

1
J∗





︸ ︷︷ ︸

Bw,c

Ψ∗(θ̇1), (4.13)

where J∗ is the sum of the inertias of the components in the drive part, reflected onto

the drive axis, c∗ is a similar sum of the viscous damping in the drive section, and Ψ∗(θ̇1)

represents a nonlinear friction term that is a function of velocity (an idealized friction

model). The actuator is a DC servomotor that can be modeled as a torque source due to

an internal servo circuit (5 kHz bandwidth for internal current loop). The motor produces

a torque TD, which is related to the output u of the controller software as TD = ktkakcu,

where these motor constants are provided to us. The inertia and damping parameters are

known approximately.

We consider first a simulation study of the system. See Table 4.4 for values of

the ECP constants that were used for this. The task is to identify the nonlinear friction

characteristic, given the linear model (i.e. given the parameters J∗, c∗, and the motor

constants). Since the methods we are using depend on having a discrete time model of

the linear plant, the first thing to do is discretize (4.12). We choose a simple Euler-type

discretization, with state defined in terms of the continuous time states as

xk :=




θ1(kh)

θ̇1(kh)



 (4.14)
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where h is the sampling time, and using the differencing approximation

xk+1 − xk

h
≈ d

dt




θ1(kh)

θ̇1(kh)



 (4.15)

we have

xk+1 = (I + hAc)xk + hBu,cuk + hBw,cΨ∗(x2,k). (4.16)

Since the system is only marginally stable a controller is applied, in discrete time, using a

simple proportional with inner-loop feedback law

uk = kskP (rk − keθ1(kh)) − kskD(keθ1(kh) − keθ1((k − 1)h) (4.17)

This requires an additional state and so we augment the state to be

xk :=







θ1(kh)

θ̇1(kh)

θ̇1((k − 1)h)






. (4.18)

Here kP and kD are the proportional and derivative gains, and rk is the reference signal at

time k. The other constants are added by the ECP software and we include them here so

that the units of signals are consistent with the ones used by that product. We can define

feedback matrices Kx and Kr according to

uk = Kxxk +Krrk. (4.19)

Applying this feedback we have finally the discrete equations of motion

xk+1 = (I + hAc + hBu,cKx)
︸ ︷︷ ︸

A

xk + hBu,cXr
︸ ︷︷ ︸

Bu

rk + hBw,c
︸ ︷︷ ︸

Bw

Ψ∗(x2,k) +




0 0

0 1





︸ ︷︷ ︸

Be

ek, (4.20)

where now we have added a possible disturbance. The output of the system is

yk = kex1,k +
[

1 0
]

ek. (4.21)

Here ek is composed of two scalar signals, a measurement and a disturbance noise.

The part of this system that is of interest to us is the static friction nonlinearity

Ψ∗. In keeping with the notation of previous sections we define zk := x2,k, the input to Ψ∗,
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Figure 4.14: Simulation data for ECP noload model.

and wk := Ψ∗(zk), the output. It is these signals, along with ek, that we need to identify.

Simulation data is generated using a Coulomb friction model,

Ψ∗(z) :=







−.03 z < 0

.03 z ≥ 0
(4.22)

a chirp reference input signal to the controller (which we hereafter call u in order to be

consistent with our usual notation), uniform white noise for e1, and Gaussian white noise

for e2. See Figure 4.14 for a plot of a typical simulation. A standard deviation of 0.35 is

used for the measurement noise (which is tiny compared to the units of y), and a standard

deviation of either 0.1 or 0.02 for the disturbance noise, which is substantially larger relative

to signals it is added onto. Regarding this, perhaps the correct setting in which to judge

the size of the disturbance noise is to compare its size to the sum of the signals that add in

to determine the increment of x2 from one sample to the next. The first difference of x2 is

plotted in the second panel of the figure, along with e2 to get an idea of their sizes.

Using simulated input-output data we now look to identify unknown signals, and

the nonlinear friction characteristic. In this system there is a very accurate measurement

of θ1 made with an optical encoder. The z signal is the derivative (or difference in discrete
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time) of this. So although z is not, strictly speaking, measured, it is almost ; a slightly

noisy version of it can be derived from the signals we have available. This is reflected in the

bootstrap iteration in that the first iteration produces most of the improvement, and later

iterates cause only very small changes. The second iterate is a very slight improvement on

the first, and then it’s essentially done. This is because in each iteration the program is

quite constrained, by the linear system and input-output data, as to how much it may vary z

from the particular solution z0. Therefore zf , and the sort operator, change very little from

one iteration to the next, and so successive iterations are solving nearly identical problems.

The iteration, along with some of the problems mentioned in the previous section, is, in

a sense, bypassed in this example. For this reason we will use the product of the first or

second iterate as the “solution” of the formulation.

The only formulation we consider here uses the dispersion function as objective

while constraining the size of ‖e‖2, which is by now our standard approach. Figure 4.15

gives an idea of how well and how easily it works, and we attempt to explore how the choice

of design weights affects the estimate. Unless otherwise specified the estimates are made

from the data in which σe2 = 0.1. As there are now two noise signals we have to choose two

noise constraints Γe,1 and Γe,2, along with Γw and Γz for the dispersion. For the latter two

we use 1 and 0.05, respectively, as we found that these allow us to find good estimates. This

choice is motivated by the fact that the set of values that z ranges over is much larger than

w in this problem due to the choice of units, therefore a small weight is used to make the

‖ΓzD
1P zz‖2 part of the dispersion on a comparable level as the ‖ΓzD

1P zw‖2 part (recall

from Section 3.3.1 that dispersion is not invariant to scaling). A good rule of thumb we

have found is that the two pieces should play a balanced role. In this case when we blindly

set Γz = 1, estimates are poor.

With this choice and a fixed portion of the data set, in the top panel of Figure 4.15

are the estimates using different constraints on the disturbance noise. As usual, as the

constraint gets tighter the scatter plot estimates get “noiser”, because ẑ and ŵ are being

used to explain variance that ê no longer can. To our eye the estimate with Γe,2 = .55

looks best. As usual the rule of thumb here, that one decrease the noise constraint until

estimates begin to look noisy, seems to work. The second panel has two estimates each

(using different disturbance noise constraints) for two different portions of the data record,

namely the first 500 points, or the next 500 points. The thing to note is that the region

of the domain of the friction characteristic that is “identified” is much smaller in the latter
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Figure 4.15: Trials for estimation of simulated Coulomb friction nonlinearity in ECP noload
model.

case, simply because the oscillation of the system is slower in this part of the record. In

the third panel we show two estimates each for 3 lengths of data record. Unlike the bungee

example, in this example estimates get distinctly better when more of the data is used.

Lastly in the fourth panel we show that if the data has less noise, then estimates will be

better (in this case the size of the disturbance noise is changed).

Now we move on to a more worthy challenge, where the operator to be estimated

is not already known to us! The problem is the same as the one just considered except that

instead of using simulation data we will endeavor to use input-output data measured on the

ECP experiment. We used the experiment without the load inertia attached and the aim

is to identify a velocity-to-friction map, and so we use the model (4.20) and (4.21), with

the same parameters as in Table 4.4. In fact, since our identification method depends to
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some degree on having an accurate linear model, the first thing we did was to run a linear

identification procedure to estimate J∗ and c∗ (this is where the values in that table come

from). Although we are thinking the system is nonlinear, we were still able to find what we

think are good numbers for these two parameters.

Next we sampled responses of the system. The ECP software has a limited number

of reference trajectories available; we chose to use chirp signals, linear in frequency (the

same input that was used in the simulation just now). Figure 4.16 shows the output, y,

for nine such experiments. The x-axis here uses units of samples (recall the sample time is

T = 0.010608 seconds). We observed the reference input and encoder output signals as we

varied amplitude, and frequency between 0.02 and 8 Hertz. Using this data, the identified

linear model, and the dispersion/noise-size formulation, we set off computing estimates.

Guided by our experience with the simulation model we fixed Γw = 1 and suspect

Γz = 0.05 is a good choice, and sought to locate appropriate noise constraints. However

in this situation we don’t know the noise variance σe so conveniently as before. We have

some idea for the measurement noise; the optical encoder should never be off by more than

plus or minus half a count. If we think this noise process is reasonably well modeled by a

uniform distribution, e1 ∼ U [−0.5, 0.5], then it has variance σ2
e = 1/12, or σe = 0.29. The

disturbance size is harder to judge. The disturbance quantity is meant to account for a lot

of things; external disturbances, unmodeled dynamics, etc, and its nature is not as clear

as the measurement noise. What we can say is that without a disturbance noise channel

in the model we would often ran into infeasibility, where the measured input-output data

is not consistent with the linear model we are assuming. It seems that some amount of

disturbance is necessary to explain the data.

We take the slightly different point of view in this problem of fixing Γe = [11], and

searching for the “correct” σe; they affect the same thing in the same way, it’s just how we

think about it. We found that the choice σe that results in the best estimate (or what we

think is best, since this time we don’t actually know) depends strongly on the data record

used for estimation. The way we decide an estimate is probably good or not is based on

the intuition built up with simulation examples. We often see that the thing to do is lower

the noise constraint until scatter plots start to get fuzzy, and then we’re close to the best

estimate that the dispersion formulation will find.

Initially it was a hard task to find the right σe, especially given the fact that it’s

different for different data records. Eventually we recognized that it’s the value of σe,2 that
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Figure 4.16: Excitation of ECP drive system during 9 chirp experiments.



134

−0.06

−0.03

0

0.03

w

Varying Γ
z
 (σ

e
=[.35 .08])

Γ
z
=1

Γ
z
=0.05

Γ
z
=0

−0.06

−0.03

0

0.03

w

Varying σ
e1

 (Γ
z
=0.05)

σ
e
=[.2 .08]

σ
e
=[.35 .08]

σ
e
=[.6 .08]

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.06

−0.03

0

0.03

w

Varying σ
e2

 (Γ
z
=0.05)

z

σ
e
=[.35 .07]

σ
e
=[.35 .08]

σ
e
=[.35 .09]

Figure 4.17: Varying Γz and σe.

needs to change, while the value of σe,1 we eventually settled on, which is 0.35, works for

most data records. In a way this makes sense. Our understanding of the measurement

noise is quite good and we expect it to essentially not depend on the experiment, but our

understanding of the process noise in this example is not. Here, the level of process noise

appears to depend on the experiment performed.

In Figure 4.17 we consider the weighting choice, using data set H in this case.

Through trial and error we settled on a value of σe = [.35 .08] as likely being a good

constraint level, and in this figure the constraint level used in the formulation is perturbed

about this point to see its effect. We see that when the level of one is raised estimates

becomes more smooth, and when made tighter, more noisy. In this picture we also note

that the estimate appears to be more sensitive to the choice of σe(2) than σe(1).

It turns out that for these estimates, the correlations of the estimated e1 with

other signals changes when its constraint level is varied; for the choice σe,1 = 0.6 there is

significant travel outside the 95% confidence bounds, and for values less than this, and for

all values of σe,2, these correlations satisfy white noise assumptions. It seems we could use
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Estimate Data Record samples used

1 H 1:500
2 E 501:1000
3 I 1:500
4 I 501:1000
5 A 1:700
6 E 1:500
7 F 1:500

Table 4.5: Data records of estimates in Figure 4.18

this fact to alert us to good choices of constraint for e1. On the other hand, correlations

associated with e2 estimates are outside the confidence bounds for all five choices, and they

do not seem to be sensitive to this choice. However we do not predictably see this feature

in all the examples we’ve tried, and are still trying to understand how to best make use of

correlation information.

We found that between data records with amplitude and frequency ranges that

are comparable the “best” scatter plots, although certainly not the same, have a consistent

shape. On the other hand, scatter plots estimated using data records with different natures

varied more substantially. In the top panel of Figure 4.18 we show the most appealing

estimates for 7 portions of data records. Table 4.5 matches up each estimate with the data

record it is based on. Estimates 1, 2, 3, and 4, which look similar, came from similar-looking

data records: frequencies around 4 to 5 Hz, and lower amplitudes. Estimates 5, 6, and 7

belong to portions of data records with slower frequencies and higher amplitudes, and these

estimates are quite different than the first four.

To convince ourselves that these are indeed reasonable estimates of something and

not just figments of our optimization, we ask whether they can be used to improve the

capability of the linear model to match the response of the ECP system. To proceed we

tried matching piecewise linear functions to the scatter plots, folding these into the linear

model, and computing the response of this augmented model to some of the input data

from the ECP experiments, for which we also have records of the actual ECP output.

Choosing Estimate 1 in the first panel of Figure 4.18, we have drawn in such a

fit. The bottom three panels correspond to three of the ECP data records, and contain the

response of the linear model to the input signal of that record, the response of the model

that is augmented with the piecewise linear fitting function, and the output of the ECP

itself. What we see is that for the 9 data records on the whole it looks like the added friction
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model is a slight improvement. The simulation for data record H, which is the data that

was used to compute Estimate 1, is a clear improvement over the linear model. The second

example is perhaps a marginal improvement and the third is questionable, but on the whole

the estimate does seem to have value.

One thing to note is that the estimates, at least the first four, do not possess the

shape that we expect a friction characteristic to have. For one thing note that most of the

estimates do not go through zero, and instead for zero velocity there is a nonzero frictional

force being exerted! This is most likely a misinterpretation of whatever phenomenon in the

system that this characteristic is capturing; certainly there is some amount of Coulomb-like

friction present, but it seems likely there is something else going on. Perhaps it is relevant

to mention that while collecting this data we did notice some preference for a direction in

which the drive inertia would turn most easily (with the power off); we’re not sure what

might be causing this or how best to model it. In those simulations using the augmented

model shown in Figure 4.18, for data records H and B there is a propensity for the nonlinear

model to maintain a nonzero mean which enables it to match the output data better than

the linear model.

Another thing to mention is that viscous friction shows up in the model in the

same way that the nonlinear friction characteristic does, namely as a static mapping between

velocity and force. In fact our first estimate of the viscous damping c∗ from linear estimation

methods was not quite accurate, and this residual mismodeling could be seen in some of the

estimate of Ψ∗, in that the outer tails had a nonzero slope. When we adjusted the viscous

damping coefficient of the linear model accordingly, this disappeared from the estimated

scatter plots.

In addition to adding the disturbance noise channel, it was at times necessary to

allow unknown initial conditions to be estimated, as opposed to being fixed, in order to

make the optimization problem feasible This occurred especially when using portions of

data records such as 501:1000, ones where the initial conditions are not zero.

We now move back to working with simulation data for the ECP model. This

time we consider the full fourth-order model, in which the elastic connects the drive and

inertia loads. This allows us to introduce two additional meaningful SISO nonlinearities

into the problem. The first is a nonlinear friction term for the load inertia, in addition to

the one for the drive. Another arises when a backlash is introduced into the idler pulleys;

this manifests in the elastic band having a deadband characteristic, where there is some
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amount of stretch possible in the band without the drive inertia feeling a reaction moment.

In this case the system equations are, analogously to (4.13),

d
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(4.23)

with θ :=
rp2
rp1
r1θ1 − r2θ2, kL is the elastic constant of the belt, J2 and c2 are the load

inertia and viscous damping coefficient, the rx are radii of pulleys in the problem, Ψ2(θ̇2)

is the nonlinear friction characteristic associated with the load, and ∆(θ) is a nonlinearity

associated with the backlash/deadzone nonlinearity in the idler pulley. In particular it is

the difference between the backlash nonlinearity and the linear function that would exist if

the size of the backlash was zero. The continuous-time differential equation is discretized

and a feedback loop is used as before, resulting in the augmented state

xk :=













θ1(kh)

θ̇1(kh)

θ2(kh)

θ̇2(kh)

θ̇1((k − 1)h)













. (4.24)

The output for this model is a noisy measurement of both shaft angles. There are dis-

turbance noises in the state-space equations for both x2 and x4. There are 3 SISO static

functions in this problem; S1, z1 and w1 are defined as before, S2, etc are analogously

defined for the load inertia quantities, and S3 = ∆, with z3 = θ and w3 = S3(z3).

Once again we generated simulation data for the problem; Figure 4.19 shows the

data used in many of the following cases. In particular we see the size of the disturbance
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Figure 4.19: Simulation data for ECP model with load inertia.
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noise level relative to the first differences of x2 and x4 (as before), and the inputs and

outputs to the 3 static functions.

This estimation problem is quite a bit more challenging than it was for the noload

system. Here there are 7 unknown signals (4 noise and 3 w) in the Ly set of equations, and

two measured outputs, leavening a balance of 5, whereas in that problem there were three

unknown signals (2 noise and 1 w) and one measured output, for a balance of 2. This is

one determinant of the number of degrees of freedom associated with estimates, and how

hard it might be to narrow the choices down to a good one.

Another issue now is that in using the dispersion objective there are now 3 static

operators to consider. We will combine them into a single objective; this means we have

to choose weights, and the issue then is to find good weighting values for that combined

objective, as well as constraints for the noise signals which now number four. Our first try

was to choose equal weightings for the Γw weights, namely Γw(1) = Γw(2) = Γw(3) = 1.

Then guided by the expected relative size of wi and zi we choose Γz(i) to balance the con-

tribution of the w and z part of the dispersion; in this case we took Γz = [0.0025 0.01 0.02].

This led to the three scatter plot estimates shown in the color cyan in Figure 4.20. Here

the estimates for S1 and S3 look reasonable, but the one for S2, the nonlinear friction

characteristic for the load inertia, is poor, too small. Moreover, we found it was difficult

to relieve some of this bias by using our standard tricks with the noise level constraint.

We considered changing the relative weight of S2’s element in the dispersion objective, by

parametrizing the dispersion weights as Γw = [1 β 1], Γz = [0.0025 0.01β 0.02], and so we

can use β to adjust the contribution of S2 in the objective. We find that when the size of

the contribution is lowered, estimates get better, to a point. See in Figure 4.20 that for

β = 0.1 the estimate is much improved. This indicates that when its weighting was high

the dispersion of S2 was being overly penalized, resulting in the small elements, and when

this downward pressure on the dispersion of S2 is pulled back the estimate can expand.

It also is interesting to consider the relative contributions of the outputs of the

three functions on the output of the system. For instance it is apparent that if one of the

functions has no effect on the output of the system, then estimates of that function will be

poor, as there is no information in the experiment about it. In this example, the output

w1 of S1 contributes to the evolution of x2, w2 contributes to that of x4, and the w3 signal

(the deadzone nonlinearity) contributes to both. Figure 4.21 shows how large each of these

is relative to the first difference of x2 and x4, for a portion of the data record. This shows
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Figure 4.20: Effect of the weighting on S2 in the dispersion function.

that in the one place where w2 enters, its contribution is relatively small, compared to the

outputs of the other static functions. Hence its contribution to the output of the system is

relatively small, and perhaps we should expect to not be able to estimate it well.
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Chapter 5

Error Bounds for Estimates of

Static Functions

A desirable objective in problems involving identification of unknown functions is

to bound the error between an estimated and actual function of the data-generating system.

Often this problem is considered under the idealized circumstance that the data-generating

system is contained in the identification model structure. A related question is, how does the

quality of estimates depend on the model structure and the particular experiment whereby

data is collected? For instance are some input signals more informative than others? We

explore these issues in this chapter.

Under some rough assumptions on the data-generating system, the elements to

be identified, and properties of the estimates (principally, that they are consistent with

input-output data and assumed Lipschitz conditions for the unknown static functions being

identified), we derive a type of bound on the mismatch between the actual and identified

static nonlinearities. These bounds depend on the input used in the identification exper-

iment, and thus they can be useful for comparing different experiments in terms of how

informative they are, or ascertaining whether some degree of accuracy can be guaranteed

by a particular combination of experiment, identification procedure, and apriori informa-

tion. These bounds are applicable for the types of estimates produced by some of the

identification techniques proposed in this thesis, among others.
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5.1 Motivating Example and Main Ideas

Consider the following “sum-of-2-nonlinearities” system, as a simple example to

illustrate the main ideas in this chapter for deriving and computing error bounds:

y(t) = S1

(
z1(t)

)
+ S2

(
z2(t)

)
, t ∈ T. (5.1)

The problem is to form estimates of the two unknown static SISO functions S1 and S2, or,

to resolve the input-output behavior of the system into the individual contributions from

these functions. To help in doing this there is experimental data available; the measured

input-output data record contains y(t) and z(t) for times t ∈ T = {1, . . . , L}. Suppose

we come up with estimates Ŝi(·) over a domain Di ⊆ R of Si(·) that is of interest, by the

following general procedure.

In previous chapters we discussed ways to form estimates ŵi of the signals wi(t) =

Si(zi(t)) that were the outputs of the functions during the experiment. Using these estimates

we define Ŝ on the points where the data record “sampled” S, as

Ŝi(zi(t)) := ŵi(t), ∀t ∈ T, i = 1, 2. (5.2)

The experiment data itself does not contain information about S other than its value at

these points in z; we can argue that if in the data-generating system S had been replaced

by any other function matching S at z then we would have obtained the same data record.

This set of points is finite since we have discrete-time systems and finite experiments.

So the second part of forming estimates is to somehow “fill in” the estimate Ŝi(·)
at points of Di that are not hit by zi in order to form a full description of Ŝi. This

choice is constrained by the assumed intersample behavior of the functions, i.e. smoothness

assumptions. If the intersample behavior is arbitrary then we cannot really hope to achieve

estimates with bounded error based on a finite input/output data record. However, it

is often appropriate to restrict our consideration to functions which have some type of

smoothness property. Generally speaking, the more smooth a function is, the more restricted

its inter-sample behavior is, and the smaller the set of functions that is compatible with a

given finite discrete input/output data record. In this chapter we use Lipschitz smoothness

constraints in order bound intersample behavior and come up with error bounds.

Define di(·) as the difference between the estimated and true function:

di(z) := Ŝi(z) − Si(z). (5.3)



145

It is the properties of this quantity that we are attempting to characterize or bound. Now

an important feature of the estimates of ŵi in preceding chapters is that they satisfy the

linear system constraints, so that

y(t) = ŵ1(t) + ŵ2(t), t ∈ T. (5.4)

If we substitute (5.2) into this and subtract (5.1), we see the di satisfy

d1

(
z1(t)

)
+ d2

(
z2(t)

)
= 0, ∀t ∈ T. (5.5)

In other words the difference between Ŝ1 and S1 at the point z1(t) is the opposite of the

difference between Ŝ2 and S2 at z2(t), and this holds for all times t in the data sequence.

Considering that the data record may be long and the input signals complex, this implies

a set of constraints between d1 and d2 that is potentially large and nontrivial.

The question becomes, how large is the set of function pairs (d1, d2) which satisfy

(5.5)? The answer depends on the inputs z1 and z2. To start off, the set contains the pair of

identically zero functions (0, 0); this just means it’s possible that the estimates are equal to

the actual functions. Are there any nonzero pairs in the set? If not, then for any estimates

such that (5.5) holds, these estimates must be equal to the true nonlinearities.

However we quickly see that there is a class of nonzero pairs; consider:

d1(z1) = c ∀z1, d2(z2) = −c ∀z2 (5.6)

where c is any number. These satisfy (5.5). In other words the system equations (5.1) allow

for estimates which are equal and opposite translations of the true nonlinearities by an

arbitrary amount. Nor will a smoothness constraint rule out a constant translation, since a

constant function is quite benign and adding a constant will not change most smoothness

measures. Given no other information about the true nonlinearities there is really no way

to rule out constant translations. This is an identifiability issue.

We could require that additional information about the true functions be provided

so that we can distinguish estimates which are constant translations. For instance maybe

the value of S1(z
o) is known, and so we require that Ŝ1(z

o) = S1(z
o). In this case the

constant translation is resolved and the question becomes, how far away is the mismatch

from zero, and a specific measure of that, for S1, is

max
z∈D1

|d1(z)| (5.7)
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Alternatively, we could take the attitude that a constant translation of S is just as good an

estimate as S itself. In this case a relevant question to ask is, how far away can d1 and d2

be from being constant? A specific measure of this quality, for S1, might be something like

max
za∈D1

d1(za) − min
zb∈D1

d1(zb) = max
za,zb∈D1

|d1(za) − d1(zb)|. (5.8)

The approach in this chapter encompasses both of these approaches.

To keep notation simpler, for the time being let’s restrict our attention to estimates

and bounds for the first function, S1. (Since the problem is symmetric in the two functions

it’s a simple matter to modify the development for the second function.) The subscript “1”

on some of the named quantities that follow reflects this choice.

Now assume that S1 and S2 are Lipschitz continuous, i.e. there exist γ1, γ2 such

that

S1 ∈ Lγ1 , S2 ∈ Lγ2 . (5.9)

Assume as well that the estimates Ŝi also satisfy this Lipschitz condition. When using the

methods described in chapters 2, 3, and 4 to estimate ŵ we can ensure explicitly that the

partial estimates (5.2) satisfy the Lipschitz condition (3.125) for pairs of points in zi by using

Lipschitz constraints as described in Section 3.3.4 in the estimation problem formulation.

With these assumptions, for any two times t, s in the data record we have
∣
∣
∣d1(z1(t)) − d1(z1(s))

∣
∣
∣ =

∣
∣
∣{Ŝ1(z1(t)) − S1(z1(t))} − {Ŝ1(z1(s)) − S1(z1(s))}

∣
∣
∣

=
∣
∣
∣{Ŝ1(z1(t)) − Ŝ1(z1(s))} − {S1(z1(t)) − S1(z1(s))}

∣
∣
∣

≤ 2γ1|z1(t) − z1(s)|. (5.10)

We will refer to this rather straightforward bound on the difference in the error at two

points as the direct Lipschitz bound. It is a direct consequence of S1, Ŝ1 ∈ Lγ1 , and depends

on γ1 only. In general we can use our knowledge of the system equations and z to find a less

conservative bound. Since d1(z1(t)) = −d2(z2(t)) ∀t ∈ T , the difference can also expressed

in terms of S2 and Ŝ2 and bounded as
∣
∣
∣d1(z1(t)) − d1(z1(s))

∣
∣
∣ =

∣
∣
∣d2(z2(t)) − d2(z2(s))

∣
∣
∣

=
∣
∣
∣{Ŝ2(z2(t)) − S2(z2(t))} − {Ŝ2(z2(s)) − S2(z2(s))}

∣
∣
∣

=
∣
∣
∣{Ŝ2(z2(t)) − Ŝ2(z2(s))} − {S2(z2(t)) − S2(z2(s))}

∣
∣
∣

≤ 2γ2|z2(t) − z2(s)|. (5.11)



147

Choosing the the stronger of(5.10) and (5.11) we have

∣
∣
∣d1(z1(t)) − d1(z1(s))

∣
∣
∣ ≤ min

{

2γ1|z1(t) − z1(s)| , 2γ2|z2(t) − z2(s)|
}

∀t, s ∈ T. (5.12)

What can happen here is that in the data there may be a pairs of times (t, s) such that

z1(t) and z1(s) are relatively far apart, so that the direct Lipschitz bound is quite large, but

it so happens that z2(t) and z2(s) are very close. In this case 2γ2|z2(t)− z2(s)| can provide

a small bound on the difference between values of d1 for points spaced far apart, relative

to the direct bound based on those points. This is the main thing we are trying to take

advantage of. It results directly from (5.5), which reflects the constraint that the estimates

satisfy the input/output data. To Look at it in another way, z2 might not be very different

at time t than at time s, while the difference for z1 at those two times is bigger. Then, in

view of the Lipschitz bounds, most of the change in y must be explained by S1, and we get

strong information about the relationship between S1(z1(t)) and S1(z1(s)).

Next, the bound given by (5.12) can generally be improved by applying the triangle

inequality. First define some notation for the RHS of (5.12),

k1(s, t) := min
{

2γ1|z1(t) − z1(s)| , 2γ2|z2(t) − z2(s)|
}

.

This bound on |d1(z1(t)) − d1(z1(s))| is defined for all t, s ∈ T . Now fix t, s ∈ T . For any

subset {r1, r2, . . . , rn} of T ,

∣
∣
∣d1(z1(t)) − d1(z1(s))

∣
∣
∣ ≤

∣
∣
∣d1(z1(t)) − d1(z1(r1))

∣
∣
∣

+
n−1∑

i=1

∣
∣
∣d1(z1(ri)) − d1(z1(ri+1))

∣
∣
∣+
∣
∣
∣d1(z1(rn)) − d1(z1(s))

∣
∣
∣, (5.13)

and so
∣
∣
∣d1(z1(t)) − d1(z1(s))

∣
∣
∣ ≤ k1(t, r1) +

n−1∑

i=1

k1(ri, ri+1) + k1(rn, s) (5.14)

We should search for the best bound on |d1(z1(t))−d1(z1(s))| by searching over all “paths”

{r1, r2, . . . , rn} through k1(s, t) (which itself is a function of the signals zi and the Lipschitz

constants).

This is a shortest-path graph problem; the graph in question has nodes at the

time points t ∈ T , and a weighting between nodes s and t equal to k1(s, t). To compute the

best bound on |d1(z1(t))− d1(z1(s))| we look for the shortest path between t and s through

this graph. Let l1(s, t) denote the length of this path. There is an efficient algorithm to
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simultaneously compute the shortest path between each pair of nodes in a graph, which

is commonly called the all-pairs shortest path (APSP) problem. Specifically, the Floyd-

Warshall algorithm computes l1(·, ·) : T × T → R in O(N3) time, where N is the number

of nodes (Papadimitriou and Steiglitz 1982). In our case N = L, the length of the data

record.

At this point we have computed a function l1(·, ·) : T × T → R, a bound on the

difference of the error in estimating S1, defined for pairs of points in the data record for

the z1 signal. Now let us switch notation slightly, changing the domain of k1(·, ·) and l1(·, ·)
from pairs of times in the data record to pairs of points in the z1 data record, using the

obvious one-to-one correspondence between the two. Thus we have

|d1(za) − d1(zb)| ≤ l1(za, zb) ∀za, zb ∈ Z1, (5.15)

where Z1 := {z1(t) : t ∈ T} ⊆ D1, the z1 data record. Using l1(·, ·) it is straightforward to

extend the bound to arbitrary pairs of points in D1 using the Lipschitz constraint on S1, the

assumption that the estimation method satisfies this constraint when filling in intersample

points, and the triangle inequality. One bound is provided, as usual, by the direct Lipschitz

bound. Next, apply the bounds provided by l1(·, ·) by “connecting” za and zb with points

in Z1. If we connect za to z11 ∈ Z1 and zb to z12 ∈ Z1 then the triangle inequality implies

|d1(za) − d1(zb)| ≤ 2γ1|za − z11| + l1(z11, z12) + 2γ1|zb − z12|. (5.16)

Due to the nature of the graph search step used in constructing l1 we need only consider

connecting za and zb to the nearest upper and lower neighboring points from Z1 (for other

points the bound of (5.16) is guaranteed to be larger). Let za,L be the greatest element of

Z1 which is less than or equal to za and za,U the least element that is greater than or equal

to it, and similarly zb,L and zb,U are the nearest elements of Z1 that surround zb. Putting

these possibilities together, the bound for arbitrary (za, zb) ∈ D1 ×D1 is

|d1(za) − d1(zb)| ≤ min{2γ1|za − zb|,

2γ1|za − za,L| + l1(za,L, zb,L) + 2γ1|zb − zb,L|,

2γ1|za − za,L| + l1(za,L, zb,U ) + 2γ1|zb − zb,U |,

2γ1|za − za,U | + l1(za,U , zb,L) + 2γ1|zb − zb,L|,

2γ1|za − za,U | + l1(za,U , zb,U ) + 2γ1|zb − zb,U |}. (5.17)
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Let’s denote this quantity, the extended bound, as m1(za, zb) : D1 × D1 → R. (An alter-

native way to extend bounds beyond pairs in Z1 would have been to add additional points

in D1 to k1 using the direct Lipschitz bound to connect the additional points to existing

points in k1’s domain, and then use the FW algorithm to produce an m1 bound containing

those points. The result is the same.)

With this quantity in hand we can get back to the task at hand as described on

page 145. The quantity (5.8), measuring the spread or non-constantness of the error, is

bounded by

max
za,zb∈D1

|d1(za) − d1(zb)| ≤ max
za,zb∈D1

m1(za, zb). (5.18)

For instance if m1(za, zb) = 0 ∀za, zb, then the error must be constant. The bound is also

applicable in the case additional information is known, such as the value of S1(z
o), and

we’re interested in the max error as in (5.7). In that case d1(z
o) = 0, and so

max
z1∈D1

|d1(z1)| ≤ max
z1∈D1

m1(z
o, z1), (5.19)

and now if m1 = 0 everywhere then the estimate must equal the true function.

5.2 Some Features of Bounds and Estimates

We now move on to discuss some properties of these bounds, in particular how

the bounds achieved depend on the input signal. First consider a data record in which z2 is

held at a single fixed value zo
2 throughout, and z1 varies. If S2(z

o
2) is known then in view of

(5.1) we in effect have a perfect measurement of S1(z) for all z ∈ Z1, that is wherever that

function is sampled. If S2(z
o
2) is not known then we still essentially know S1(z) at these

points, modulo a constant translation. The data record explores S1 independently of S2,

since z1 varies independently of z2. On the other hand S2 is in some sense identified very

poorly. We only have information about it at a single point in its domain, zo
2. To the extent

that z1 varies at successive points where z2 doesn’t vary much you get good information

about S1 but not so much about S2, and vice versa. Note that for the static example we

have been working with, this “independent variation” can apply to non-consecutive time

steps, for instance if the variance of the set {z1(t) : t ∈ U} is much larger than the variance

of the set {z2(t) : t ∈ U}, for an arbitrary subset U ⊆ T . The importance of this effect

appears in (5.12), where |z2(t)−z2(s)| is used to bound |d1(z1(t))−d1(z1(s))|; to the extent

that z1 varies while z2 is constant, this statement is more powerful.
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To some extent there is a tradeoff. Some inputs may do a good job providing

information about S1 but not S2, some may be more useful for identifying S2 than for

identifying S1. Next consider any data record in which z2 = z1. In this case we observe

y(t) = S1(z1(t)) + S2(z1(t)) (5.20)

= S1(z1(t)) + v(z1(t))
︸ ︷︷ ︸

=:S̃1(z1(t))

+S2(z1(t)) − v(z1(t))
︸ ︷︷ ︸

=:S̃2(z1(t))

, (5.21)

where here v(·) is an arbitrary function. If S̃1(·) and S̃2(·) meet the Lipschitz constraints

and any known information, then it is impossible to distinguish, on the basis of this data

record, that the estimates S̃1 and S̃2 are any less valid than S1 and S2 themselves, or

constant translations of them, since they satisfy the data record and assumptions. Since v

may vary widely and still satisfy these constraints, we cannot hope to arrive at meaningful

estimates. The situation is sort of worst-case in terms of the issue described in the previous

paragraph. Neither function’s input varies while the other stays fixed. So some data records

may be especially poor in that they identify neither function well. In these cases the

experiment lacks the power to resolve the output into the individual contributions from

the two nonlinearities. For this problem if the functions’ inputs are not truly independent

and are in fact always equal, then the model should be using only one function instead

of two. This is an identifiability issue. However if the two functions’ inputs are actually

independent in that they are not necessarily identical, then we need to have distinct inputs

to resolve that there are two separate nonlinearities involved.

Another characteristic of the input data that is plainly important is that of how

densely it covers the domain of interest. Typically we are concerned with identifying a func-

tion over some infinite domain, for instance when D1 is an interval in R. The input-output

data can only give information about the function at a finite subset of that domain and

for the remaining portions we essentially must make a guess. The guess is constrained by

assumed smoothness criteria, and in the present scenario this is the Lipschitz constraint

on the function. This assumption limits how far off the guess might be, and this is what

we use to supply error bounds involving these regions. As noted, this is a very simple and

conservative bound. The material of this chapter is an effort to provide less conservative

bounds, but in regions where input data is sparse we must resort to cruder bounds. There-

fore inputs with large regions lacking points in the input data record will tend to produce

worse bounds.
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To summarize, there are at least two characteristics of inputs that affect the bounds

on estimate quality of e.g. S1. One is how well the input data record z1 covers the domain

D1 where we wish to identify the function. Another is the extent to which one input varies

independently of the other.

Equation (5.18) or (5.19) boils the information in m1 down into one number that

bounds the variation of the error over the domain D1 or the maximum absolute error over

D1, respectively, based on a given input data record. This is a valid bound, but m1 contains

more information. Recall m1(za, zb) is a bound on the difference between the estimation

errors at za at zb, and is therefore some kind of measure on how much the error can differ

from being a constant. Now, because m1 contains a bound for each pair of points in D1 it

can alert us to problem regions and give clues as to the weaknesses of a particular input.

For instance the data record may cover some regions of D1 relatively sparsely, and as we

pointed out above this will generally lead to less impressive bounds for pairs of points

involving these regions, and therefore a larger entire-domain bound. Another situation is

that the data may contain a small number of “outlier” points, which are far away from

and essentially independent of the other data points. These are contrary to the holding-

one-fixed portion of the holding-one-fixed-while-the-other-varies notion, and can make it

harder to identify S at these points. Now, if we are willing to exclude these few points or

regions from D1, then entire-domain bounds such as (5.18) can become much tighter over

the slightly smaller domain. Thus, it can be useful to look at the complete picture painted

by the two-dimensional m1(·, ·), and can provide guidance to maybe exclude some points,

redesign the experiment, or look at other possibilities to obtain a tighter bound on the

estimation error (and presumably also, better estimates).

Now we consider two examples that illustrate some of these issues. In both the

model being considered is that of (5.1), the sum of two unknown functions, a static system

with no measurement noise.

In “Example 1” we consider two data records, denoted A and B, and compare

the bounds that result. In record A the two inputs zA
1 , z

A
2 are realizations of IID noise,

uniformly distributed on [−1, 1], that is

zA
i ∼ U [−1, 1], (5.22)

with zA
1 and zA

2 independent. In record B the input signals are similar except that the
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Figure 5.1: Example 1: Input data records zA and zB.

distribution is Gaussian, specifically

zB
i ∼ N (0, 0.1), (5.23)

with the variance chosen so most data falls within [−1, 1]. In addition, 5 non-random

“outlier” points are included to demonstrate their effect. Figure 5.1 displays the first 200

points in these data records; e.g. the left panel is a plot of zA
2 vs zA

1 . In the right panel the

outlier points are indicated with an asterisk. These points are relatively far away from both

other zB
1 and zB

2 points. Note that the normal distribution has higher density near zero,

and lower density away from zero.

We look at bounds on the error of S1; results for S2 look similar due to the

qualitatively symmetric nature of the input data record. The domain of interest is D1 =

[−1, 1]. For both input records, and using Lipschitz constants γ1 = γ2 = 1, we compute the

k1 and l1 bounds on the data record, and the m1 bound over D1. Figure 5.2 and Figure 5.3

are plots ofm1(·, ·) using the first 200 points of input records A and B, respectively. In these

plots of 3-dimensional data, the x-y position locates the pair of points whose error spread

is being bounded, and the color at that point corresponds to the bound. Since m1(za, zb)

must equal m1(zb, za), the plots are symmetric. Note the difference in the character of two

plots. The bound from zA has more or less uniform features over the whole interval D1,

while that from zB has large regions where the pairwise bound is small, and other regions

where the pairwise bound involving points in those regions is much larger. The overall

bound, as in (5.18), is 0.17 using zA, and 0.42 using zB. However when the region under
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Figure 5.2: Example 1: m1(za, zb) bound for zA, uniformly distributed.
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Figure 5.3: Example 1: m1(za, zb) bound for zB, normally distributed.



154

consideration is reduced to D∗
1 = [−0.5, 0.5], the bound using zB is much lower at 0.10,

while the bound using zA, at 0.12, is much less changed, and indeed now higher than the

zB bound. Eliminating the outer regions improves the overall bound for using zB mainly

because the density of zB is lower in these regions and so the bounds are not as good.

This shows that it can be useful to look at the picture painted by the entire

collection of pairwise bounds as represented by l1 or m1, in addition to the overall bound

(5.18). Having said this, for the remainder of the examples in this chapter, we will plot

representative cross-sections of this function simply because 2-dimensional data is easier to

visualize than 3-dimensional. If we hold one argument of m1 fixed at say z̄b, then as za

varies m1(za, z̄
b) is the bound on the error difference between z̄b and any point in D1. The

cross-sections we choose will be representative or indicative of the behavior we are trying

to illustrate. In the remainder of the chapter we will use D1 = [−1, 1], and choose inputs

that more or less fill this set with a uniform density, so that different possible cross-sections

have relatively similar characteristics. If z̄b is a point where S1(z̄b) is known, so that the

estimate error is zero there, then m1(za, z̄b) is a bound on the error on the domain, i.e.

|S1(za) − Ŝ1(za)| ≤ m1(za, z̄b).

Let’s look at the z̄b = 0 cross-sections of the bounds in the preceding example.

Refer to Figure 5.4. In the top two panels the solid line is the m1 bound, the circles are the

points l1(z1(t), 0), and the ’+’ symbols indicate the points k1(z1(t), 0). The latter two are

the pairwise bounds between z1 = 0 and the other L − 1 points in the z1 data record (we

arranged so that zero is actually in that record). First note that the l1 bound is usually much

smaller than the k1 bound; the shortest-path graph search is an essential step. Regarding

the m1 bound we see once again in these cross-sections the behavior described above, where

it quickly gets larger in regions where the data record is relatively sparse. This is especially

noticeable in the outer regions of [−1, 1] in the zB bounds, but in these plots it is now also

noticeable in the zA bounds, for instance near za = −0.8, and at more interior regions in

the zB bounds, for instance near za = −0.2.

The m1 bound tends to be good wherever there is data, and in-between it grows

at the rate dictated by direct application of the Lipschitz assumption, as in (5.10). The

exception to this general rule is around the 5 “outlier” points that were added to the zB

data record, indicated in the second panel of Figure 5.4 using asterisks instead of circles.

Unlike other points in the data record, these are not bringing the bound down any more

than the direct Lipschitz constraint. This is because the input at those time points is far
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away from any other input points, both in z1 and z2, and so the key expression (5.12) isn’t

helping to bound the d1 difference involving those points. Data records with good density

over the domain of interest is necessary for good bounds, but not sufficient.

To place the level of the bound in perspective, in the third panel of Figure 5.4

we show the m1(za, 0) bound for the zA input, along with the direct Lipschitz bound of

(5.10) and a representative function that satisfies the Lipschitz assumption, namely the sine

function (which is in Lγ1 with γ1 = 1). In this context the bound appears relatively small.

Also, we see that if we had made a Lipschitz assumption that was overly conservative, say

for instance γ1, γ2 = 2 whereas the functions being estimated have Lipschitz constant 1,

the resulting bound can still be useful, that is, small relative to the size of functions being

estimated. For, following the derivation (5.10) through (5.17), if we compute bounds using

two different sets of Lipschitz constants that differ by a common factor, then the bounds

will differ by that factor as well. In Figure 5.4 it’s apparent the bound could be scaled up

significantly before it becomes large relative to the example nonlinearity.

Finally in the bottom panel of Figure 5.4 we show the bound computed using

different amounts of the data record zA, specifically, the first 100 time points, the first 200,

and the first 800. The bound becomes better as more data is used. This is attributed to

two effects. First, with more data present in the fixed region D1 = [−1, 1], the spacing

necessarily becomes more dense, and so the bound in regions between data record points

gets better. But notice the bound also improves for those points common to the three data

records as the length increases. This is because the extra points in this randomly generated

input data allow more chance for z1 to vary independently of z2.

In “Example 2” we look at a parametrized series of data records, observing how

the parameter affects the bounds and then comparing these bounds to actual estimates

of the unknown signals wi, using the methods of the previous chapters, for two different

estimation formulations. We use four sets of inputs, each of length 200, defined as

zk
2 (t) = −1 + 0.01t (5.24a)

zk
1 (t) =

((

zk
2 (t) + αkX(t)

))

[−1,1]
, (5.24b)

with α1 = 0, α2 = 0.05, α3 = 0.1 and α4 = 0.5. Here X ∼ U [−1, 1] is a uniformly

distributed random variable (the same realization is used in all four), and ((·))[−1,1] : R →
[−1, 1] is a modulo operator which maps R into the the interval [−1, 1]. These four input

records are plotted in Figure 5.5. Each of these 8 signals varies between -1 and 1. The z2
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Figure 5.5: Example 2: The four inputs.

signal is the same for all four, a steady ramp of evenly spaced points going from -1 to 1.

The z1 signal is equal to z2 plus an added fluctuation about it which is proportional to αk,

zero for the first data record and increasing for the other three. Thus in the first record

there is no independence between the two input signals, while for the others the level of

independence increases, in that for a given range in z2 the z1 signal has a larger spread, as

αk increases.

Using γ1 = γ2 = 1 the m1-bound is computed as usual for S1. The result, for each

of the 4 inputs, is plotted in the top panel of Figure 5.6. As expected, as the amount of

“jitter” increases the bound becomes stronger. For the first data record where z1 = z2 the

bound is especially poor.

Next we form estimates using these inputs. Data records are obtained by simu-

lation. The two nonlinearities to be identified are shown in Figure 5.7. Note that both

functions are in Lγ with γ = 1. The output part of the data record is simulated using these

functions, according to the system (5.1). Using this estimates ŵi of the signals wi are then

formed using the ideas from Chapter 3, in two formulations. To relate the current example

to the setup and notation there, note that this problem contains no noise (no e signal),

u1 = z1 and u2 = z2, and the linear system is defined by y = w1 + w1.

In the first estimation formulation the 2-norm of ŵ is minimized subject to the

Lipschitz constraint and the additional constraint S1(0) = 0.8 (which resolves the constant-

translations issue and makes m(z, 0) a bound on the absolute estimation error, that is
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|w1(z) − ŵ1(z)| ≤ m(z, 0)):

ŵ =

argmin
w

‖w‖2
2 = ‖w1‖2

2 + ‖w2‖2
2

subject to y(t) = w1(t) + w2(t) ∀t ∈ T

S1(0) = 0.8

|wi(t) − wi(s)| ≤ |zi(t) − zi(s)| ∀t, s ∈ T.

(A)

Scatter plots of the estimates ŵ1 versus z1, using each of the four input records, are shown

in the second panel of Figure 5.6, along with the actual S1. The absolute value of the

estimation errors are plotted in the third and fourth panels, along with the computed

bounds (the fourth panel is the same data as the third, zoomed in to show one portion of

the plot in greater detail). First off, in the third and fourth panels we see the computed m1

indeed bounds the estimation errors, which we expect due to the Lipschitz constraint in the

estimation problem formulation. In fact in this case the bounds are quite conservative. But

we also see that as the input jitter α increases, the trend of the size of the estimation error

is the same as that of the bounds, in that it gets uniformly smaller across [−1, 1]. When

using the first data record in which z1 and z2 are identical the estimates are especially poor,

and when using the fourth, the estimates look quite accurate.

Similar bounds and estimation results are obtained for the second function, S2.

The m2 bound and estimates ŵ2 are shown in Figure 5.8, analogously to Figure 5.6. The

overall picture for S2 looks look similar to the that of S1. The quality of the bounds and

estimates for the four data records follows the same trend as for the first nonlinearity. This

is not unexpected; note that the inputs z1 and z2 are essentially symmetric. We would see

this if we plotted again the data of Figure 5.5, but reordering the time points in order of
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Figure 5.8: Example 2: Bounds and formulation A estimates of S2, for the four inputs.
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increasing z1 (and since this is a static system the ordering in time of the data record is not

important). Then z2 would appear to have the jitter, increasing in variance from α1 to α4.

The second estimation formulation does not impose the Lipschitz constraints, in

order to show that the characteristics of input records that we have found to be important

when these constraints are assumed are still relevant for other related estimation formulation

where the assumptions are not met necessarily. The second estimation scheme is to minimize

the dispersion , subject this time only to the S1(0) = 0.8 constraint:

ŵ =

argmin
w

‖D1P z1w1‖2
2 + ‖D1P z2w2‖2

2

subject to y(t) = w1(t) + w2(t) ∀t ∈ T

S1(0) = 0.8.

(B)

Estimation results for the first nonlinearity, using the four data records, are shown in Fig-

ure 5.9, with the previously-computed m1 bounds. The major trends are similar. It so

happens the bounds are still met, but there are no guarantees for this estimation formula-

tion.

Finally in this section, consider a system that is slightly more general than the

one we have been considering up until now:

y(t) = θ1S1(z1(t)) + θ2S2(z2(t)). (5.25)

As compared to (5.1), in (5.25) we allow that the weightings in the output equation of the

contributions from the individual functions may be different than unity. What effect might

this have on bounds and estimates? As the system is still fairly simple we can isolate this

effect and compare results for different choices of weights.

It is easy to adjust the bounding scheme of Section 5.1 to account for the added

generality (this is a preview of the more general process presented in the next section).

Here, (5.5) becomes

θ1d1

(
z1(t)

)
+ θ2d2

(
z2(t)

)
= 0, ∀t ∈ T, (5.26)

so that

d1(z1(t)) = −θ2
θ1
d2(z2(t)), (5.27)

and in forming k1(·, ·), (5.12) becomes

∣
∣
∣d1(z1(t))−d1(z1(s))

∣
∣
∣ ≤ min

{

2γ1|z1(t)− z1(s)| ,
∣
∣
∣
∣

θ2
θ1

∣
∣
∣
∣
2γ2|z2(t)− z2(s)|

}

∀t, s ∈ T. (5.28)
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Figure 5.9: Example 2: Bounds and formulation B estimates of S1, for the four inputs.

Comparing these two, we see that the smaller |θ2/θ1|, the smaller we expect k1(·, ·) to be.

The situation is symmetric in the two functions, so that
∣
∣
∣d2(z2(t))−d2(z2(s))

∣
∣
∣ ≤ min

{
∣
∣
∣
∣

θ1
θ2

∣
∣
∣
∣
2γ1|z1(t)−z1(s)| , 2γ2|z2(t)−z2(s)|

}

∀t, s ∈ T, (5.29)

and the smaller |θ2/θ1|, the larger we expect k2(·, ·) to be. In other words, the larger the

relative magnitude of the contribution of the output of Si in the output y, the smaller the

bounds on the estimation error for that function (and so, we infer, the better the estimates).

This makes some intuitive sense, in that as functions have a lesser effect on the output, or

play a less important role in the system’s input-output behavior, it becomes harder to know

what they are and to form estimates.

In “Example 3” we consider bounds and estimates with system (5.25) for three

choices of weights, with [θ1 θ2] equal to [1 1] (as in Example 2), [4 1], and [1 4] respectively.
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In each case we use the same input as the α2 = 0.05 input of Example 2—see (5.24). We also

use the same two estimation formulations, A and B, as in that example. Using the modified

procedure for computing them, the bounds m1 and m2 are shown in Figure 5.10, along

with the formulation A estimates, for the three systems. The formulation B estimates, sans

bounds, are shown in Figure 5.11. In these figures we indeed see that as the contribution

of the output of S1 in the output becomes relatively larger, the bound m1 becomes smaller

and the estimate Ŝ1 becomes more accurate, under formulation A as well as formulation B.

And conversely the bound m2 grows larger and the estimate Ŝ2 degrades.

5.3 General Formulation

In Section 5.1 and 5.2, in presenting the main ideas of this chapter, we considered

exclusively the static, sum-of-2 nonlinearities system as in (5.1) or (5.25). In this section we

present ideas for extending the bounding approach to a significantly more general system,

including dynamics, multiple outputs, more than 2 nonlinearities, and noise, ones which

can be put in the following form:

y(t) =
∞∑

k=0

F (k)y(t− k) +
∞∑

k=0

E(k)u(t− k) +
∞∑

k=0

G(k)w(t− k) +
∞∑

k=0

H(k)e(t− k), (5.30)

and

wi(t) = Si(z[i](t)). (5.31)

Here we no longer restrict Si to be single-input (as in Section 3.3.5, by the notation z[i]

we mean that subset of the nz scalar signals comprising z that wi is a function of). To

form bounds we use knowledge of the input z to S, in other words z is treated as a known

input to the system. As well, u and y are measured, while e is an unmeasured disturbance.

Note that system structure is a subset of Wiener nonlinear systems, the subset where the

linear part is a so-called ARMAX system. Although w and e are not assumed to be known,

estimates of them satisfy the linear system equations so that

y(t) =
∞∑

k=0

F (k)y(t− k) +
∞∑

k=0

E(k)u(t− k) +
∞∑

k=0

G(k)ŵ(t− k) +
∞∑

k=0

H(k)ê(t− k). (5.32)

subtracting (5.30) from (5.32) we have

0 =
∞∑

k=0

G(k)d(z(t− k)) +
∞∑

k=0

H(k)f(z(t− k)), (5.33)
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Figure 5.11: Example 3: Bounds and formulation B estimates of S1 and S2, for three
different G(0).

where

d(z(t)) := Ŝ(z(t)) − S(z(t)), or








d1(z(1)(t))
...

dnw(z(nw)(t))








=








Ŝ(z(1)(t)) − S(z(1)(t))
...

Ŝnw(z(nw)(t)) − Snw(z(nw)(t))








(5.34)

and

f(t) := ê(t) − e(t) (5.35)

and as before we form estimates using

Ŝ(z(t)) := ŵ(t), t ∈ T (5.36)

so that on t ∈ T

ŵ(t) − w(t) = d(z(t)) (5.37)

Fixing our attention now on the J ’th function, consider forming a bound on the

difference in dJ between pairs of points in its domain. As before we use the data record,

known linear system, and Lipschitz assumptions to form kJ(·, ·), an initial bound between

the pairs of points in the input data record. In Section 5.1, Equation (5.12), we formed

k1(z1(t), z1(s)) as the minimum of a the direct Lipschitz bound, and a bound arrived at
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using the system equations and assumptions about the estimate. The situation is the same

here, except that there are potentially more candidates of the latter type included in the

minimization. For every nonzero element in the J ’th column of any of the G(k), we can

use (5.33) to form a bound on |dJ(z(J)(t)) − dJ(z(J)(s))| Considering the i’th row (which

corresponds to the i’th output) of (5.33) at two times t and s and subtracting these, we

have

∑

k=0..∞

j=1..nw

Gij(k)
[

dj(z(j)(t− k)) − dj(z(j)(s− k))
]

+
∑

k=0..∞

j=1..ne

Hij(k)
[

fj(t− k) − fj(s− k)
]

= 0

(5.38)

for all i = 1..ny and all (t, s) ∈ T . Now for any (i,K) such that GiJ(K) 6= 0, by isolating

that term and using the triangle inequality we get the bound

∣
∣
∣dJ(z(J)(t−K))−dJ(z(J)(s−K))

∣
∣
∣ ≤ 1

|GiJ(K)|

{
∑

k=0..∞

j=1..nw

(k,j)6=(K,J)

|Gij(k)|
∣
∣
∣dj(z(j)(t−k))−dj(z(j)(s−k))

∣
∣
∣

+
∑

k=0..∞

j=1..ne

|Hij(k)|
∣
∣
∣fj(t− k) − fj(s− k)

∣
∣
∣

}

(5.39)

As before we assume the functions satisfy Lipschitz conditions, i.e. Sj ∈ Lγj , and also that

estimates meet the Lipschitz constraints, i.e.

|ŵj(t) − ŵj(s)| ≤ γj‖z(j)(t) − z(j)(s)‖. (5.40)

Therefore we have, for j = 1..nw,

|dj(z(j)(t)) − dj(z(j)(s))| =
∣
∣
∣{Ŝj(z(j)(t)) − Sj(z(j)(t))} − {Ŝj(z(j)(s)) − Sj(z(j)(s))}

∣
∣
∣

=
∣
∣
∣{Ŝj(z(j)(t)) − Ŝj(z(j)(s))} − {Sj(z(j)(t)) − Sj(z(j)(s))}

∣
∣
∣

≤ 2γj‖z(j)(t) − z(j)(s)‖. (5.41)

This bounds some of the quantities in (5.39). We need to also bound

|fj(t) − fj(s)| =
∣
∣
∣{êj(t) − ej(t)} − {êj(s) − ej(s)}

∣
∣
∣ (5.42)

But this expression involves stochastic quantities and it is less clear how to proceed in

bounding it. If ej is IID then we have no information about how ej(t) might be related
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to ej(s). This is unlike the case for dj , where we have some information about how the

relationship between dj(z(j)(t)) at different times because of the Lipschitz information. This

was not an issue in the previous section because the system there did not have a stochastic

disturbance input. If our stochastic model for ej is an IID uniformly distributed process,

say ej(t) ∼ U [aj , bj ], then the following is valid

|ej(t) − ej(s)| ≤ bj − aj (5.43)

and in the estimation formulation we could constrain êj(t) ∈ [aj , bj ] and it follows that

|êj(t) − êj(s)| ≤ bj − aj (5.44)

and putting it together

|fj(t) − fj(s)| ≤ 2(bj − aj). (5.45)

However if the stochastic model for ej is an IID normal process then there is no finite

deterministic bound on |ej(t)−ej(s)|, since for any N the probability that |ej(t)−ej(s)| > N

is nonzero.

The fundamental issue is that we’re looking for deterministic bounds in a situation

involving stochastic quantities. A more appropriate question would be something like,

“what is the probability that the absolute value of the error, or differences in error, exceeds

such-and-such?”. However in the present development we are not employing a stochastic

framework to answer questions like this; this may be a useful extension to consider at some

point. A possible work-around is to pick a value such that |ej(t) − ej(s)| exceeds it with

only a small probability, and be satisfied that the bound will be valid in a high percentage

of experimental noise realizations. If we are satisfied with βj for this value, and say we also

enforce or think with high probability that

|êj(t) − êj(s)| ≤ βj (5.46)

then with acceptably high probability

|fj(t) − fj(s)| ≤ 2βj (5.47)
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Equation (5.39) becomes

∣
∣
∣dJ(z(J)(t−K)) − dJ(z(J)(s−K))

∣
∣
∣ ≤

1

|GiJ(K)|

{
∑

k=0..∞

j=1..nw

(k,j)6=(K,J)

|Gij(k)|2γj

∣
∣
∣z(j)(t− k) − z(j)(s− k)

∣
∣
∣ +

∑

k=0..∞

j=1..ne

|Hij(k)|2βj

}

(5.48)

The RHS here is all known quantities and can therefore be used for bounding. Now to form

kJ(z(J)(t̃), z(J)(s̃)), the initial bound on |dJ(z(J)(t̃)) − dJ(z(J)(s̃))|, analogously to what we

did previously in (5.12), we pick the smallest number as the RHS of (5.48) varies over all

(outputs) i, (lags) K, and (times) t and s such that t − K = t̃, s − K = s̃, GiJ(K) 6= 0.

Also include in this minimization the direct Lipschitz bound,

|dJ(z(J)(t̃)) − dJ(z(J)(s̃))| ≤ 2γJ‖z(J)(t̃) − z(J)(s̃)‖ (5.49)

With kJ formed, it is straightforward to apply the next step, the all-pairs shortest-

path graph search minimization, to form lJ . Once again the graph has L nodes, one for

each time present in the data record. For multi-input SJ the next step, of forming mJ , the

extension of the bound to arbitrary pairs of points in DJ , is not as straightforward as before.

This is because for a given pair it’s a more involved geometrical problem to decide which

points in the data record Z(J) of z(J) we need to check as we did in (5.17). Regardless, lJ

is still valid, and the parenthesized alternative suggested on 148 is a possible way to attack

the problem. Of course, for multi-input functions the computed bound is also harder to

visualize. For single-input SJ these issues goes away.

In the discussion of the k bound following Equation (5.12) we noted that the bound

due to terms like (5.48) can be small even when the direct Lipschitz bound is large and this

effect is primarily responsible for bounds that ultimately beat the direct Lipschitz bound.

With noise, or at least with the way suggested above for dealing with noise signals, the

situation may not be quite as good. Note that the term on the RHS of (5.48) is always at

least as big as
∑

k=0..∞

j=1..ne

|Hij(k)|2βj (5.50)

which is a constant independent of the input signal and pair (s, t) of times. This is a

lower limit on how small the bound can get, and is a consequence of putting deterministic
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bounds on stochastic quantities. The hope is this number is small relative to the sizes of

nonlinearities e.g. with noise levels that are known to be low.

In Section 5.1 we saw that knowledge of the system equation (5.1), a data record,

and smoothness constraints is not enough to rule out constant translations when forming

estimates of Ŝ1 and Ŝ2. In essence d1 = c and d2 = −c is a function that lies in the nullspace

of (5.5), and being constant escapes the scrutiny of Lipschitz or any other smoothness

constraints as well as restrictions due to one of the zi varying while the other does not. To

put it another way we cannot, without additional information about the value of either S1

or S2 at some point in its domain, distinguish between

S(z) and S(z) + v (5.51)

where v is any element of the space

V † =










1

−1



 c : c ∈ R






(5.52)

With the more general system (5.30) the same ideas hold. Smoothness criteria can-

not distinguish between constant translations. In this case the set of constant translations

of S(z) that are consistent with data records (5.30) is the space

V =
∞⋂

k=0

N (G(k)), (5.53)

vectors that lie in the nullspaces of all of the matrices G(k), because for d(·) = v ∈ V the

first term in the sum of (5.33) is zero. Note for the sum-of-2 system we had G(0) = [1 1]

and G(k) = 0 for k > 0, and so V = N ([1 1]) = V †. As before we can either treat such

constant translations of S as acceptable estimates, or require enough additional information

about the value of S at some points in its domain to resolve the particular element of the

“estimate space”, i.e. the constant translations, that is the correct one.

We note a couple general trends with the bounds. First, the more outputs the

system has, the better (smaller) the bound will be. This is because for each s, t pair there

are more choices in the minimization that forms kJ(z(J)(s), z(J)(t)). This is as we would

hope, that an experiment that contains more information, for instance by using additional

sensors, can provide better estimates. Secondly, the more nonlinearities involved the worse

(larger) the bounds. This is because in order for (5.48) to be small we need the points



170

z(j)(t− k) and z(j)(s− k) to be small for all j = 1..nw, j 6= J , simultaneously. For large nw

it happens less frequently in the data record that all nw − 1 of these pairs are close, and

a larger data record length is needed to achieve the same bound. The trends we noted in

the previous section still hold, namely those regarding data density, the relative variance of

z(J) with respect to the other functions’ inputs, and relative weighting of a given function

in the output (as measured by the size of the elements of G).

Thus far the bounds on estimation error, and the computation of them, does not

depend on computing any estimates. The bounds are functions primarily of the linear part

of the system, the inputs to the unknown functions, assumed Lipschitz constants for these

functions, and properties that estimates possess in general. This is an attractive situation

because the process can reveal how bounds, and the quality of estimates, depend on these

factors, as we have been discussing. However, given actual estimates ŵ and ê, we can

use these to refine bounds, or make them less conservative. This is because in bounding

expressions like (5.39) we can replace bounds on quantities like |Ŝj(z(j)(t)) − Ŝj(z(j)(s))|
and |êj(t)− êj(s)| with their actual values. This type of aposteriori bound is more oriented

toward bounding the quality of a particular estimate, as opposed to exploring how the

potential quality of estimates depends on various factors. It is also useful when Lipschitz

bounds on estimates are not known beforehand, or when the properties of noise estimates

is unclear.

5.4 Review

To summarize, in this chapter we presented an approach to bounding the estima-

tion error, for a class of problems involving identification of static nonlinearities. In deriving

these bounds we assumed that estimates have several properties, including consistency with

an assumed linear system structure and a Lipschitz smoothness constraint. In particular,

these properties are natural consequences of the estimation procedures we proposed in ear-

lier chapters for such identification problems. In addition it was assumed that the input z

to the unknown functions is available, as it is used in the bounding computation. It is an

open problem as to how we might compute analogous bounds in estimation problems where

the z signal is not fully known. This is consistent with a common theme in this dissertation,

that availability of z leads to formulations that are much more tractable than when this

signal is unknown.
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While certainly valid, in examples we have seen that the bounds can be conserva-

tive. For a given set of computed estimates we can reduce the conservatism by replacing

overbounds of various expressions involving estimates with the exact value. At any rate,

for a class of estimation formulations we can compute bounds on the errors.

Another application of the bounding ideas is to test and compare different input

signals, for a given model structure and in advance of collecting data, in order to guide ex-

periment design, i.e. the problem of determining what input characteristics are important

in order to generate experimental data that yields acceptable estimates. We indicated

several such properties, including density on the domain of the unknown function, indepen-

dent variation of the inputs to the function being bounded, and length of the data record.

For these cases we argued intuitively how the property should affect bounds, and saw this

behavior in examples. We also showed that the general trends seen in the bounds carry over

to when actual estimates are computed, both for formulations that satisfy the assumptions

used to derive bounds, and similar types of formulations that do not necessarily meet the

assumptions.

A final benefit of thinking about bounds is insights gained about what various

characteristics of model structure imply for the estimation problem. Some specific charac-

teristics that we looked at were the number of unknown functions, the number of outputs,

noise levels, weightings of the individual Si in the output, and Lipschitz property of the Si.

When things don’t seem to be working well, we can now point to at least a few things to

check.
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Chapter 6

Conclusions

This thesis contains ideas for estimating unknown static functions within inter-

connections made up of linear systems and static operators. The approach considered here

involves using experimental input-output data and knowledge about the system to form

estimates of the inputs and outputs of the unknown functions that occurred during the

experiment. Another interpretation of the problem being solved is that of signal estimation

under this condition of having knowledge that certain elements of the system are static

operators. This approach is fundamentally nonparametric.

The basic idea is straightforward. We may not know or have access to the signals

we’d like to have, and so we endeavor to form estimates of the unknown signals in the

problem, taking advantage of the information that is available. Some signals in the problem

are measured, and these are related to the uncertain signals through a linear system in

a known way. This represents a constraint on the unknowns. Another constraint is that

certain of the signals are related to each other in a static way, and a third is that estimates

of signals modeled as stochastic processes should possess properties that are consistent with

the stochastic model.

The sizes of the estimation problems we form are large, because they involve

estimating signals, and lengths of data records can be long. Because of this care must be

taken to form problems that are actually solvable, and fit into optimization frameworks

that can handle a large number of decision variables and constraints. This is where much

of the time has been spent. Firstly, the linear system represents a large system of equality

constraints. With the right approach these can be handled in a recursive, efficient way,

and effectively taken out of the problem. Detailed algorithms for doing this were given in
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Section 3.2.

Next, devising and studying efficient measures of staticness was a main emphasis

of Chapter 3, and indeed a main emphasis of the thesis. We found that the dispersion

measure strikes a reasonable balance between simplicity and effectiveness. Several closely

related measures were also suggested, and different combinations of these may prove useful

depending on the specifics of the problem being solved. We examined, in a stochastic setting,

how good a job the dispersion operator does at distinguishing between signals related by

a static operator and those that are not. At a more basic level, we also discussed how the

dispersion operator agrees with our intuition for recognizing static relationships.

Lastly we discussed a few simple considerations in order to make sure that esti-

mates of noise signals are consistent with any assumed stochastic properties of them.

We saw time and again that the staticness measures become difficult objects to

optimize when z is not known, that is, when z depends on the decision variables of the

problem. This is a major stumbling block for implementation. An iterative method to

get around this problem is suggested, and shown to produce reasonable results in several

examples. However this so-called bootstrap method also has its shortcomings. For instance

in one example we saw that the iteration did not find optimal solutions of the original

problem posed, nor does it produce a monotonic sequence of estimates (which might be

considered desirable). Perhaps there are refinements or alternatives to the method that do

not suffer these shortcomings. Along these lines, another thing to be investigated is whether

slightly different formulations of the main problem we used, using different combinations

of the optimization elements listed throughout, might reliably produce better results. Yet

another is to try out some well-known methods for using convex solver to find approximate

solutions to nonconvex problems.

Finally in Chapter 5 we presented computational methods to bound the degree

of mismatch between estimates and the true function, under assumptions on the unknown

functions and estimation procedure that are characteristic of some of the estimation methods

in this thesis. These computations are based on the input to the experiment, and so can say

something about the potential a specific input signal has to produce favorable estimation

results.

It is important to keep in mind how the methods used in this thesis might fit into

a larger picture of estimation or system identification. One major assumption is that the

linear part of the system is exactly known. This is not a technically restrictive assumption,
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in that any model structure can be put into the correct form. However it is practically

restrictive, in that the more of the system can be pulled out into the known linear part, the

more tractable a solution becomes.

The methods are not, however, compatible with known nonlinear parts of the

model. This is because any attempt to impose a nonlinear constraint between signals

immediately renders a problem nonconvex, and therefore outside the scope of what we

consider solvable for these variable sizes. This is a potential area for future investigation,

to see if there is any progress to be made with respect to being more amenable to using

different types of prior information.

We think these methods could be potentially useful in finding starting points

for nonlinear solvers in parameter estimation problems. In general we could characterize

the estimation methods under consideration as rough, but robust. They seem to perform

well and degrade gracefully under a wide variety of situations. On the other hand the

final estimates that are produced often do not exactly match the true functions, nor do

they seem to approach the exact nonlinearity in an asymptotic sense. On the other hand

parameter estimation methods, which are impressive when they converge, are also subject

to being sensitive to choice of initial estimate and basis choice, and can fail spectacularly.

A possibility is to use the convex programming methods to find a good starting point, and

then let general nonlinear optimizers clean up that estimate.
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