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Abstract

Loudspeakers: Modeling and Control

by

Khalid Mohammad Al-Ali

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California at Berkeley

Professor Andrew K. Packard, Chair

This thesis documented a comprehensive study of loudspeaker modeling and con-

trol. A lumped-parameter model for a voice-coil loudspeaker in a vented enclosure

was presented that derived from a consideration of physical principles. In addition,

a low-frequency (20 Hz to 100 Hz), feedback control method designed to improve the

nonlinear performance of the loudspeaker and a suitable performance measure for

use in design and evaluation were proposed. Data from experiments performed on a

variety of actual loudspeakers confirmed the practicality of the theory developed in

this work.

The lumped-parameter loudspeaker model, although simple, captured much of the

nonlinear behavior of the loudspeaker. In addition, the model formulation allowed a

straightforward application of modern control system methods and lent itself well to

modern parametric identification techniques.

The nonlinear performance of the loudspeaker system was evaluated using a suit-

able distortion measure that was proposed and compared with other distortion mea-

sures currently used in practice. Furthermore, the linearizing effect of feedback using

a linear controller (both static and dynamic) was studied on a class of nonlinear

systems. The results illustrated that the distortion reduction was potentially signifi-



2

cant and a useful upper bound on the closed-loop distortion was found based on the

sensitivity function of the system’s linearization.

A feedback scheme based on robust control theory was chosen for application to

the loudspeaker system. Using the pressure output of the loudspeaker system for feed-

back, the technique offered significant advantages over those previously attempted.

Illustrative examples were presented that proved the applicability of the theory

developed in this dissertation to a variety of loudspeaker systems. The examples

included a vented loudspeaker model and actual loudspeakers enclosed in both vented

and sealed configurations. In each example, predictable and measurable distortion

reduction at the output of the closed-loop system was recorded.

Professor Andrew K. Packard
Dissertation Committee Chair
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Chapter 1

Introduction

This thesis documents a comprehensive study of loudspeaker modeling and con-

trol. A lumped-parameter model for a voice-coil loudspeaker in a vented enclosure is

presented that derives from a consideration of physical principles. In addition, a low-

frequency, feedback control method designed to improve the nonlinear performance of

the loudspeaker and a suitable performance measure for use in design and evaluation

are proposed. Data from experiments performed on a variety of actual loudspeakers

will be used to confirm the usefulness of the theory developed in this work.

Recent demands in the audio industry include flatter amplitude response and lower

nonlinear distortion for the output pressure response of loudspeakers that operate in

the low-frequency region (typically from 20 Hz to 100 Hz). Also, modern recording

techniques and contemporary playback systems (e.g. Compact Disc (CD) and Digital

Versatile Disc (DVD) players) are capable of reproducing signals in the full range of

the audible spectrum (from 20 Hz to 20 kHz). Since the weakest link in the chain

of components comprising a well designed acoustic reproduction system is usually its

loudspeaker system, rigid requirements are placed on the loudspeaker’s design, espe-

cially at the low frequencies in which some operate. Moreover, loudspeaker systems

are limited by their inherent dynamics in low-frequency reproduction and become

highly nonlinear well before reaching their maximum acoustic output.
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Faithful reproduction of low-frequency signals by conventional loudspeakers re-

quires sophisticated electromechanical design techniques, advanced materials, and

tight manufacturing tolerances, necessitating a better understanding of the under-

lying physical processes that govern their operation. Most of the earlier work in

modeling low-frequency, voice-coil loudspeakers treated them as lumped-parameter

linear systems as described in [7] for loudspeakers without enclosures, [55], [54], and

[57] for loudspeakers in sealed enclosures, [64], [65], and [66] for loudspeakers in vented

enclosures, and [41] and [63] for loudspeakers in both sealed and vented boxes. Al-

though the work was ground-breaking, especially in light of the fact that some of

these models became industry standards, they are not sufficient in analyzing today’s

high-performance loudspeakers, which are typically driven beyond their linear output

range. More significant was the work by [28], [31], and [33], where lumped-parameter

nonlinear models were analyzed.

While modern computers have allowed for the use of complex models based on

numerical approximations (e.g. finite element models), these are typically specific

to a particular loudspeaker system and are sometimes intractable when dealing with

modern system identification and control techniques. For these techniques to apply

seamlessly to loudspeakers, the loudspeaker models should be constructed with system

analysis and theory in mind. This approach benefits applications where maximum

performance is extracted from loudspeakers, such as high-fidelity sound reproduction

and active-noise cancellation [26]. In Chapter 2, the current understanding of a

loudspeaker’s dynamics in the low-frequency region will be extended and clarified

by way of a simple nonlinear parametric model that captures much of the behavior

of real loudspeakers with nonlinearities. The model will be laid out in a specific

structure, each element of which will be individually studied. The model will include

loudspeakers in vented enclosures, which can be easily specialized to deal with sealed

boxes, as well.

As shown in [14], [27], [48], and [8], the linearizing effect of feedback using a
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linear controller on some nonlinear systems is widely known, but has only recently

been exploited in loudspeakers. In Chapter 3, a suitable measure for the nonlinear

distortion of the low-frequency loudspeaker is proposed, analyzed, and compared with

distortion measures currently used in practice. Also, the effect of feedback (using both

a static and dynamic linear controller) on the distortion in the output of a special

class of nonlinear systems is detailed. Results relating to the linear controller are

found, including a practical upper-bound on the distortion of the closed-loop system,

along with some illustrative examples.

In the past, several control methods have been proposed in order to improve the

response of the pressure generated by the loudspeaker system. These methods fall

into the following categories:

Direct Inversion: The most straightforward approaches are given by [32], [23], [5],

[12] and [10], where direct, nonlinear inversion of the loudspeaker’s dynamics are

performed via a nonlinear system. The nonlinear filter is a pre-processor of the

desired input signal, the output of which is connected to the loudspeaker sys-

tem’s input. If the loudspeaker system is perfectly known and time-invariant,

the distortion reduction potential is large. This, however, is not the case in

practice due to unmodeled effects such as aging and changes to the acoustic en-

vironment within which the loudspeaker is operating. Moreover, the pre-filter

does not compensate for disturbances due to extraneous sounds present in the

environment. Even a slight change in the system’s dynamics may adversely

affect the loudspeaker’s performance bringing it to a level lower than that of

the loudspeaker without the pre-filter. Another dynamic inversion method is

studied in [36], where an adaptive linear pre-filter is used. Since the adaptive

process is on-line, the pre-filter offers the advantage of adjusting the filter co-

efficients in response to changes in the loudspeaker system’s dynamics. On the

other hand, the method only deals with the linear dynamics of the loudspeaker

and does not offer any rejection to exogenous disturbances.
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Nonlinear Feedback Control: As outlined in [61], [52] and [34], nonlinear control

schemes are proposed, where the loudspeaker cone’s position is used as the

feedback signal. While these methods can theoretically fully linearize the cone

motion’s dynamics, they rely on an exact understanding of the loudspeaker

system’s dynamics and a noise free measurement signal. This is not realistic

due to unmodeled effects (as mentioned earlier) and noise introduced by the

sensor measuring the feedback signal. Furthermore, the methods depend on

the cone’s position as the feedback signal, which is currently less practical than

using the cone’s acceleration or the loudspeaker’s pressure output.

Linear Feedback Control: To reduce the control system’s complexity, techniques

by which the voice-coil current is fed back using a linear controller are devel-

oped in [62], [9], [30], [24], [38], [37] and [3]. Even though the techniques have

the advantage of not requiring a sensor for feedback use, they have to infer the

voice-coil velocity information via a linear map involving the voice-coil current.

Since that map may not actually be linear (or fixed), the available distortion re-

duction potential of feedback control may not be fully exploited. To deal with

this issue, [11], and [1] consider the use of an accelerometer (to measure the

cone’s acceleration) as the feedback sensor. This method has been successfully

implemented in several commercial products, with significant performance im-

provement. However, since the ultimate goal is to improve the output pressure

response of the loudspeaker, assumptions are made with regard to the map from

the cone’s acceleration to the pressure output. Since the pressure information

is not fed back to the controller, the closed-loop system may be sensitive to

changes in that map. Moreover, the feedback sensor must be physically at-

tached to the loudspeaker’s cone. Even though modern accelerometers are light

and compact, the loudspeaker’s moving mass is measurably increased, which

can adversely affect the system’s performance potential.
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In Chapter 4, a feedback scheme based on modern control systems theory is applied

to a loudspeaker system. The control system utilizes the pressure output of the

loudspeaker system for feedback. One of the advantages of this technique over those

previously attempted is that it controls more of the loudspeaker’s dynamics, while

simultaneously remaining simple to implement. All that is necessary is a pressure

transducer and a properly designed, simple linear filter for the control method to

be realized. Also, the method results in a closed-loop system that guarantees the

specified performance in the face of uncertainties in the system’s dynamics, offers

exogenous disturbance rejection, and exhibits reduced sensitivity to sensor noise.

Furthermore, its non-invasive nature allows its use as a retrofit to existing loudspeaker

systems, without the added penalty of increasing their moving mass.

To demonstrate the applicability of the theory developed in this dissertation to

a variety of loudspeaker systems, three examples are discussed in Chapter 5. The

first uses the vented loudspeaker model developed in Chapter 2, while the other two

involve actual loudspeaker systems in both vented and sealed configurations. Data

from the examples are presented and the results are evaluated. Some concluding

remarks and summary of the findings are given in Chapter 6.

In Appendix A, proofs for the theoretical results involving the interaction between

the loudspeaker cone’s motion and the acoustic environment are given. Appendix B

documents a linear algebra derivation which involves converting implicit state-space

equations to explicit expressions, while Appendix C shows how to perform a state-

space extraction of a blocking zero. Finally, Appendix D lists some linear system

matrices for the first example of Chapter 5.
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Chapter 2

Loudspeaker Model

This chapter details the development of a lumped-parameter loudspeaker model.

The approach taken is to capture as much of the nonlinear behavior of the loudspeaker

as possible while keeping the model simple, so that it lends itself to control and

parametric identification techniques currently available from the literature. Figure

2.1 shows a schematic of a voice-coil loudspeaker in a vented enclosure.

Enclosure

Vent

Voice-Coil Loudspeaker
Signal Input

Figure 2.1: The Vented-Box Loudspeaker

The enclosed loudspeaker is modeled as a combination of the following compo-

nents: A voice-coil loudspeaker, a vented enclosure, an acoustic environment, and a

duct attached to the vent. These components are detailed as follows.
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2.1 Voice-Coil Loudspeaker

A typical voice-coil loudspeaker is illustrated in Figure 2.2. A time varying cur-

Magnetic
Gap Voice-Coil

Former

Loudspeaker Electrical Leads
Basket

Spider

Dust Cap

Cone

Surround

Vent

Pole Piece

Back Plate

Top Plate

From Amplifier

Magnet

Voice-Coil

Figure 2.2: Voice-Coil Loudspeaker

rent from an amplifier drives a voice-coil motor attached to a rigid cone. The cone

motion is constrained to move predominantly in the axial direction by the spider and

surround (together forming the mechanical suspension), which are rigidly attached to

the loudspeaker’s basket. This attachment method also introduces mechanical stiff-

ness and damping which forces the cone to rest in a nominal position when no current

is fed into the voice-coil.

2.1.1 Free Body Analysis

A one-dimensional free body diagram of the loudspeaker is sketched in Figure 2.3.

The cone is viewed as a rigid piston that is free to move axially.

A z-coordinate force balance results in the governing differential equation

F − Fk − FRm
+ Fb − FH = mz̈, (2.1)

where m is the loudspeaker’s moving mass, z̈ is the cone’s acceleration (=: d2z
dt2

), and

the forces are due to
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Rm

F

z

Piston

F

F

F

F

k

b

H

Figure 2.3: Loudspeaker Free-Body

F : voice-coil motor,

Fk, FRm
: mechanical stiffness and damping introduced by the mechanical suspension,

respectively, and

FH, Fb: acoustic environments the cone faces are exposed to.

2.1.2 Voice-Coil Motor

Figure 2.4 shows the electrical circuit diagram of the voice-coil motor where u is

the voltage applied across the voice-coil, and i, Le, and Re are the voice-coil current,

inductance, and resistance, respectively [28]. The voice-coil motion generates the

back-emf term (=: Bl(z)ż), where z, ż, and Bl(z) are the motor’s position, velocity

(=: dz
dt
), and force factor, respectively. The force factor is the product of the mag-

netic flux density (=: B) and the length of the voice-coil conductor immersed in the

magnetic field (=: l).

Assuming that Le and Re are constant while applying Kirchhoff’s voltage law to

the circuit yields the governing differential equation [53]

Le
di

dt
= u−Rei−Bl(z)ż. (2.2)

The force generated by the motor is proportional to the voice-coil current and is
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+
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Figure 2.4: Voice-Coil Motor’s Electrical Circuit

described as [28]

F (i, z) := Bl(z)i =: F. (2.3)

Typically, the motor’s magnetic structure produces a non-uniform magnetic field that

the voice-coil moves in, such as Figure 2.5 illustrates.

−0.15 −0.075 0 0.075 0.15
0

10

20

30

 z [m]

 B
l [

T
.m

]

Figure 2.5: Voice-Coil Motor’s Force Factor

Assuming a symmetric magnetic field, the nonlinearity can be parametrized by

Bl(z) :=
Bl0

1 +Bl1zκ
, (2.4)

where Bl0 and Bl1 are the linear and nonlinear force factors, respectively, and κ is a

positive, even integer (Bl0 = 25.4 T ·m, Bl1 = 105 m−4, and κ = 4 for Figure 2.5).
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2.1.3 Mechanical Suspension

The mechanical suspension comprised of the spider and surround can be modeled

as a nonlinear spring and a linear damper connected in parallel. Figure 2.6 shows a

a plot of force vs. displacement for a typical stiffening spring.

−0.03 −0.015 0 0.015 0.03
−350

−175

0

175

350

 z [m]

 F
k [

N
]

Figure 2.6: Stiffening Spring

This nonlinear map can be well described by the polynomial

Fk(z) := k0z + k1z
2 + k2z

3 =: Fk, (2.5)

where k0 is the linear spring constant, k1 and k2 are the quadratic and cubic coeffi-

cients, respectively. Note that for a symmetric curve, k1 := 0 is assumed (k0 = 3922

N/m, k1 = 0, and k2 = 107 N/m3 for Figure 2.6).

Finally, the mechanical damping is modeled as

FRm
(ż) := Rmż =: FRm

, (2.6)

where Rm is the mechanical damping factor.

Substituting (2.3), (2.4), (2.5), and (2.6) into (2.1) and combining with (2.2) yields

the nonlinear voice-coil loudspeaker equations

d2z

dt2
=

1

m

[

Bl(z)i− Fk(z)−Rm
dz

dt
+ Fb − FH

]

, (2.7)
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di

dt
=

1

Le

[

u−Rei−Bl(z)
dz

dt

]

. (2.8)

2.2 Acoustic Environment

Consider a rigid infinite baffle residing in a R3 half-space ({(x, y, z) ∈ R3 : z ≥ 0})
with a prescribed normal velocity uz(x, y, t) confined to a finite region Ω ∈ R2 on its

surface (z = 0), as illustrated in Figure 2.7.

( )x, y, z, t

(x, y, t)

Infinite Baffle

p

zu
z

y

x

Ω

Figure 2.7: Baffled Source

The linearized wave and Euler’s equations governing the pressure p(x, y, z, t) in

the half-space are [44], [29]

∆p =
1

c2
∂2p

∂t2
, (2.9)

ρ0
∂u

∂t
= −~∇p, (2.10)

where u(:= u(x, y, z, t)), c, and ρ0 are the particle velocity, wave speed, and equi-

librium density of the medium, respectively. The boundary condition is expressed

as
∂p

∂z

∣

∣

∣

∣

z=0

= −ρ0
∂uz
∂t

. (2.11)

Taking the Fourier transforms of (2.9), (2.10), and (2.11) yields [42]

∆P̂ = −w
2

c2
P̂ , (2.12)

jωρ0Û = −~∇P̂ , (2.13)
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∂P̂

∂z

∣

∣

∣

∣

∣

z=0

= −jωρ0Ûz, (2.14)

where P̂ , Û , and Ûz are the Fourier transforms of p, u, and uz, respectively. Equation

(2.12) is referred to as the Helmholtz Equation.

Separating the spatial and temporal components of the source velocity yields

uz(x, y, t) := l(x, y)f(t), (2.15)

as illustrated in Figure 2.8. Taking the Fourier transform of (2.15) gives

Ûz(x, y, ω) = l(x, y)f̂(jω), (2.16)

where f̂ is the Fourier transform of f .

( t)f

z

x, y

Infinite Baffle

( )l x, y

Figure 2.8: The Function l(x, y)f(t)

Assuming l(x, y) ∈ Cc (R2) ∩ L∞, the solution which satisfies (2.12), (2.13), and

(2.14) that is valid everywhere except at (x, y, z) ≡ (0, 0, 0) is given by

P̂ (x, y, z) =

[
∫

R2
φ(x− η, y − ξ, z)l(η, ξ) dη dξ

]

f̂(jω), (2.17)

where

φ(x, y, z) :=
jωρ0
2π

e−j
ω
c

√
x2+y2+z2

√

x2 + y2 + z2
. (2.18)

The proof is given in Appendix A.
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Then, the integral

H :=

∫

Ω

P̂ (η, ξ, 0)dη dξ (2.19)

is the Fourier transform of the force (:= FH(t)) exerted on the source, averaged over

Ω.

Fix the location (x, y, z) := (x̄, ȳ, z̄) and define

Gp(jω) := P̂ (x̄, ȳ, z̄). (2.20)

Note that Gp(jω) and H (=: H(jω)) relate the steady-state pressure and force re-

sponses to the source velocity, respectively, where Gp(jω) is parametrized by the

location (x̄, ȳ, z̄). These relations can be computed as follows.

Letting f(t) := ejωt (for a sinusoidal, steady-state source motion) the steady-state

pressure can be described as

p(x̄, ȳ, z̄, t) = Gpe
jωt. (2.21)

The integral in (2.17) can be approximated for a fixed (x, y, z) := (x̄, ȳ, z̄), point-

wise in ω, by numerical methods (e.g. rectangular rule). Then, a finite-dimensional,

rational, frequency domain fit (cascaded with a pure time delay) of the generated

data from the integral can be obtained.

The steady-state force can be written as

FH(t) = Hejωt (2.22)

and the integral in (2.19) can be similarly approximated and fit with a rational system.

Since the acoustic equations support superposition, this analysis can be easily ex-

tended to include the case of multiple sources on an infinite baffle (e.g. a loudspeaker

with a vent). When the assumptions are made that the loudspeaker cone and the

air on the face of the vent (baffle-side) act as rigid pistons, are constrained to move

axially, and are mounted on an infinite baffle in a half-space, (2.21) can be used to

obtain the pressure at any point in the half-space. Also, (2.22) can be utilized to
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determine the forces FH or Fb in (2.1), the equation governing the motion of the

loudspeaker’s cone.

As an illustration, the frequency response from the source velocity to the pressure

at the location (x̄, ȳ, z̄) = (−0.15, 0, 1) (in meters) was computed for an infinitely

baffled, circular piston with radius a := 0.16 meters vibrating in air (ρ0 = 1.21

kg/m3, c = 343 m/s). The shape function was given as

l(x, y) :=



















1 for
√

x2 + y2 ≤ a

a+ε−
√
x2+y2

ε
for a ≤

√

x2 + y2 ≤ a+ ε

0 elsewhere,

(2.23)

where ε ∈ R+ is small and nonzero. Since the data contained a pure time delay of

z̄
c
= 2.9× 10−3 seconds, it was removed for the purposes of performing a rational fit.

Therefore, Figure 2.9 shows a 5th-order, frequency-domain fit (using a least squares

algorithm) that is in good agreement with the data (without the delay). Now that

the fit is computed, it can be cascaded with a time delay element to obtain the map

from the source velocity to p(x̄, ȳ, z̄, t).

Similarly, the frequency response from the source velocity to the average force

acting on the piston was computed and fit with a 6th-order, rational function. Since

the calculation involved the pressure on the face of the piston itself (rather than

another surface), there was no time delay.
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Figure 2.9: Velocity to Pressure Frequency Response at (x̄, ȳ, z̄) = (−0.15, 0, 1) meters
with the Delay Removed
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2.3 Enclosure

Figure 2.11 shows an insulated enclosure of volume Vb, filled with air at pressure

Pb. The enclosure has two openings which are covered with two rigid pistons with

cross sectional areas Ω1 and Ω2, respectively (the theory can be easily extended to an

arbitrary number of openings). The pistons are allowed to freely move in the z1 and

z2 directions, respectively, while no air is permitted to escape or enter the enclosure.

z1

z2

2

Ω1

Ω

bP

V ,b γ

Figure 2.11: Vented Enclosure

2.3.1 Assumptions

In order to obtain a simple enclosure model, the following assumptions were made:

• Perfect gas with constant specific heats.

• Isentropic thermodynamic process (reversible and adiabatic).

• Uniform static compression within the enclosure.

Under these assumptions, the thermodynamic relationship between Pb := Pb(z1, z2),

and Vb := Vb(z1, z2) is derived from the ideal gas law to be [47]

Pb(z1, z2)V
γ
b (z1, z2) = C, (2.24)

where γ is the ratio of the specific heat at a constant pressure to the specific heat at

a constant volume (γ = 1.4 for air) and C is a constant. Define Pb0 := Pb(0, 0) and
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Vb0 := Vb(0, 0). Then, given Pb0 and Vb0 ,

Pb(z1, z2)

Pb0

=

(

Vb0
Vb(z1, z2)

)γ

. (2.25)

Let

pb(z1, z2) := Pb(z1, z2)− Pb0 , (2.26)

vb(z1, z2) := Vb(z1, z2)− Vb0 . (2.27)

Realizing that vb(z1, z2) = Ω1z1 + Ω2z2, the final relationship reduces to

pb(z1, z2) = Pb0

[

(

1 +
Ω1z1 + Ω2z2

Vb0

)−γ

− 1

]

. (2.28)

Therefore, the forces exerted on the pistons with cross sectional areas Ω1 and Ω2 are

Fb1(z1, z2) := pb(z1, z2)Ω1, (2.29)

Fb2(z1, z2) := pb(z1, z2)Ω2, (2.30)

respectively.

2.3.2 Issues Relating to Loudspeakers

The following issues are observed when dealing with enclosed loudspeakers:

• Given that |pb| is never more that 104 Pa and the temperatures are not extremely

low (e.g. near 0 K), the ideal gas law holds for air.

• If the process is not perfectly adiabatic (e.g. due to poorly insulated enclosure

walls, etc.), γ has to be experimentally determined.

• Equation (2.24) is not valid if the thermodynamic process is not reversible:

– Irreversible processes produce entropy (:= total molecular “disorganiza-

tion” within the system).
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– Examples of irreversible processes: Unrestrained expansion (leaks through

the enclosure’s walls, flexure of the piston and the enclosure’s walls that

have not been taken into account) and energy transfer due to large tem-

perature non-uniformities (i.e. large temperature gradients in the enclosed

air).

• Since this is a static model, it is not valid at high frequencies (> 170 Hz for a

typical, 0.5 × 0.5 × 0.5 m3 enclosure with c = 343 m/s). The development of

standing waves in the enclosure cause the pressure to be nonuniform across the

box.

With the assumptions and issues in mind, (2.29) and (2.30) can be incorporated in

(2.1), the loudspeaker cone’s equation of motion.

2.4 Duct Model

Consider a one-dimensional duct of length L with cross sectional area Ωd. The

governing linearized acoustic equations are given by [44], [29]

∂2p(ξ, t)

∂ξ2
=

1

c2
∂2p(ξ, t)

∂t2
, (2.31)

ρ0
∂u(ξ, t)

∂t
= −∂p(ξ, t)

∂ξ
, (2.32)

where p(ξ, t) is the pressure inside the duct as a function of space ξ and time t, u(ξ, t)

is the particle velocity, and c and ρ0 are the speed of sound in air and corresponding

density at equilibrium, respectively. The values for p(0, t), p(L, t), ∂u(0,t)
∂t

=: z̈(0, t),

∂u(L,t)
∂t

=: z̈(L, t) are given as boundary conditions, where z̈(0, t) and z̈(L, t) are the

particle accelerations at ξ = 0 and ξ = L, respectively.

To solve this problem, a finite difference approximation for (2.31) and (2.32) is

proposed [35]. Figure 2.12 shows the duct divided into N+1 sections, each with width

h := L
N+1

.
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Figure 2.12: One-Dimensional Duct

Approximating (2.31) yields

pi+1(t)− 2pi(t) + pi−1(t)

h2
=

1

c2
p̈i(t), i = 1, 2, . . . , N + 1, (2.33)

where pi(t) is the pressure at the i-th face in the duct and p̈i(t) :=
∂2p(ih,t)

∂t2
. Note that

pN+1(t) = pL(t). Equation (2.32), which furnishes the boundary condition relation-

ships, yields the approximations

−p1(t) + p0(t)

ρ0h
= z̈(0, t) =: z̈0(t), (2.34)

−pL(t) + pN(t)

ρ0h
= z̈(L, t) =: z̈L(t). (2.35)

Letting η :=

[

p

ṗ

]

, the foregoing equations can be expressed implicitly as





η̇

02



 :=





Â B̂1 B̂2 B̂3 B̂4

Ĉ D̂1 D̂2 D̂3 D̂4



























η

p0

pL

z̈0

z̈L























(2.36)
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where

Â :=





























0N×N
(

c
h

)

IN

(

c
h

)























−2 1 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 0 · · · 0
. . . . . . . . . . . . . . .

0 0 · · · 1 −2























N×N

0N×N





























, (2.37)

B̂1 :=











0N




(

c
h

)

0(N−1)















, B̂2 :=











0N




0(N−1)
(

c
h

)















, (2.38)

B̂3 := 02N =: B̂4, (2.39)

Ĉ :=







−
(

1
ρ0h

)

0 · · · 0

0 · · ·
(

1
ρ0h

)

(Nth location)
0 · · · 0







2×2N

, (2.40)

D̂1 :=





(

1
ρ0h

)

0



 , D̂2 :=





0

−
(

1
ρ0h

)



 , (2.41)

D̂3 :=





−1
0



 , D̂4 :=





0

−1



 . (2.42)

Note that the row and column separation lines were added for clarity. Define the

pressures and accelerations at the ends of the duct as the inputs and outputs, respec-

tively. Since
[

D̂3 D̂4

]

is invertible, the 2N th-order equations can be written explicitly

as










η̇

z̈0

z̈L











=





Aduct Bduct

Cduct Dduct















η

p0

pL











, (2.43)

where

Aduct := Â, (2.44)
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Bduct :=
[

B̂1 B̂2

]

, (2.45)

Cduct := −
[

D̂3 D̂4

]−1

Ĉ, (2.46)

Dduct :=
[

D̂3 D̂4

]−1 [

D̂1 D̂2

]

. (2.47)

The details of converting the equations from implicit to explicit expressions can be

found in Appendix B.
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Chapter 3

Nonlinear Distortion Measures

To quantify the loudspeaker’s nonlinear behavior, some measures of the nonlinear

distortion must be defined. Recent findings in low-frequency psychoacoustics indicate

that the most significant (and likely to be heard) type of distortion is harmonic, with

the odd-order harmonics being the most bothersome. Hence, harmonic distortion

performance has been found to be a suitable measure in determining a loudspeaker’s

linearity when operating in the low-frequency region [19]. One attractive property

of using the harmonic distortion as a measure of the nonlinearity is its ability to

capture in a single number the level of distortion from the complex harmonic spectrum

produced by the output of a nonlinear system. In this chapter, several measures are

proposed and their properties analyzed with suitable examples.

3.1 Fourier Theory Preliminaries

Given a real, periodic function y(t) defined on t ∈ [0, T ] ⊂ R+, its Fourier series

can be described as [50]

y(t) := a0 +
∞
∑

n=1

an cos
2π

T
nt+

∞
∑

n=1

bn sin
2π

T
nt, (3.1)
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where the coefficients {an}∞n=0 and {bn}∞n=1 are called the Fourier coefficients of y.

These can be computed as

a0 =
1

T

∫ T

0

y(t) dt,

an =
2

T

∫ T

0

y(t) cos
2π

T
nt dt, (3.2)

bn =
2

T

∫ T

0

y(t) sin
2π

T
nt dt, n > 0.

Note that
{

2π
T
n
}∞

n=1
and

{

an cos
2π
T
nt+ bn sin

2π
T
nt
}∞

n=1
are referred to as the harmonic

frequencies and harmonic components in y, respectively. Also,
(

2π
T

)

is called the

fundamental frequency and
(

a1 cos
2π
T
t+ b1 sin

2π
T
t
)

the fundamental component or first

harmonic in y.

3.2 Harmonic Distortion: Definition

Figure 3.1 shows a causal nonlinear system f that maps u into y with the property

that for bounded sinusoidal inputs, f produces bounded periodic outputs, in the

steady state [51].

yu f

Figure 3.1: Nonlinear System

Let

u(t) := ū sinωt (3.3)

and assume the steady-state output to be periodic with period T := 2π
ω
. Therefore,

the Fourier decomposition of the output signal y is given in (3.1) and (3.2).

Let

Υ(y) :=

√

|a1|2 + |b1|2, (3.4)



25

i.e. Υ is the amplitude of the fundamental component in y. The following measures

of the harmonic distortion in y are considered. Define

THD (Υ, ω) :=

√

∑∞
n=2

(

|an|2 + |bn|2
)

∑∞
n=1

(

|an|2 + |bn|2
) . (3.5)

Furthermore, a slightly modified version of THD that has some desirable properties

(to be shown later) is proposed as

THDA (Υ, ω) :=

√

∑∞
n=2

(

|an|2 + |bn|2
)

|a1|2 + |b1|2
. (3.6)

Also, a simple measure that relates the amplitude of the kth harmonic component to

that of the fundamental component is given by

HDk (Υ, ω) :=

√

|ak|2 + |bk|2

|a1|2 + |b1|2
. (3.7)

For instance, suppose the input-output relation of a static map is

y := Ψ1(u) :=







1 if u > 0

−1 if u < 0.
(3.8)

Then, if u(t) = ū sinωt, y(t) := Ψ1(u(t)) will be a square wave with unit ampli-

tude, and frequency ω.

A square wave is periodic, and thus a Fourier series can be computed with

a0 = 0, a1 = 0, . . . , an = 0, . . . (3.9)

b1 =
4

π
, b2 = 0, b3 =

4

3π
, b4 = 0, b5 =

4

5π
, b6 = 0, . . . (3.10)

Therefore, Υ = b1 and THD (Υ, ω) ≈ 0.435, i.e. the map Ψ1 produces about

43.5% harmonic distortion. In this case, the THD and the fundamental component’s

amplitude values don’t change regardless of the input signal. Hence, the “graph” of

THD is a single point.

To illustrate how THD and THDA change as functions of Υ, consider the following

examples.
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Figure 3.2 illustrates a static, piecewise linear function described by

y := Ψ2(u) :=



















1 + 1
2
(u− 1) if u > 1

u if − 1 ≤ u ≤ 1

−1 + 3
2
(u+ 1) if u < 1.

(3.11)

Using (3.5) and (3.6), Figure 3.3 shows both nonlinear measures as functions of Υ.

−6 −4 −2 0 2 4 6
−10

−5

0

5

u

y

Figure 3.2: Static, Piecewise Linear Function

Similarly, Figures 3.4 shows a nonlinear function described by

y := Ψ3(u) := u+ εu3, (3.12)

where ε = 1.66 × 10−4 for this example. The distortion characteristics for this cubic

polynomial are illustrated in Figure 3.5.
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Figure 3.3: Two Measures of Harmonic Distortion for the Piecewise Linear Function
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Figure 3.4: Cubic Polynomial
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Figure 3.5: Two Measures of Harmonic Distortion for the Cubic Polynomial
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3.3 Harmonic Distortion: Properties

One of the attractive features of the measure defined in (3.5) is that it describes

the percentage of “energy” in the output signal that is not at the input sinusoidal

frequency, ω. It is also a nonlinearity measure widely adopted by the audio industry.

On the other hand, the measure described in (3.6) will be used when investigating the

effects of feedback on the nonlinear distortion (Section 3.4). By investigating (3.5)

and (3.6) and Figures 3.3 and 3.5, it is evident that both measures agree well when

the distortion is small, with THDA being the larger of the two. Another observation

is that THD has a limit approaching unity (which can be interpreted as that the

“energy” in y resides entirely outside the fundamental frequency), whereas THDA

does not. Moreover, both measures yield zero distortion when the output signal’s

spectrum contains only the frequency of the input sinusoid, indicating that the system

producing the output is linear.

In addition, (3.7) is useful when assessing the audibility of harmonic distortion for

humans, when sine-wave inputs are used to drive nonlinear acoustic sources. Even

though two signals may have the same THD (or THDA), the audibility of the dis-

tortion may be different. This is partly due to the fact that humans’ perception

of a periodic, acoustic signal is a function of the period and the amplitudes of the

harmonic components. As a matter of fact, studies have shown that if

HD2 (Υ, ω)

∣

∣

∣

∣

∣

Υ∈[0.2,6.5] Pa,
ω∈[20π,200π] rad/sec

≤ 0.03,

HD3 (Υ, ω)

∣

∣

∣

∣

∣

Υ∈[0.2,6.5] Pa,
ω∈[20π,200π] rad/sec

≤ 0.01,

HDk (Υ, ω)

∣

∣

∣

∣

∣

Υ∈[0.2,6.5] Pa,
ω∈[20π,200π] rad/sec

≤ 0.003, k ≥ 4, (3.13)

then the distortion in y is inaudible [19]. Therefore, this guideline is suitable in deter-

mining the nonlinear performance of a loudspeaker and suggests that it is sufficient

to linearize a loudspeaker system up to the point where this guideline is met. Beyond
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this point, the difference in linearity between this system and another, more linear

one is difficult to perceive by humans. The HDk measure is the subject of ongoing

research and will not be addressed further here.

Consider the static nonlinearity shown in Figure 3.6, where u(t) := ū sinωt.

yu ( ).Ψ

Figure 3.6: Static Nonlinearity

The distortion for this system can be easily computed using (3.5) and (3.6). The

effect on the distortion measures of introducing a stable linear system in an intercon-

nection with the nonlinearity will be studied using the following examples.

First, augment a Linear, Time Invariant (LTI) system L to the input side of the

nonlinearity, as shown in Figure 3.7, where u1 := A1u(t), for some constant A1.

Therefore, y1 = Ψ(v1) = Ψ (Lu1) =: f1 (u1). Let Υ and Υ1 be defined as the steady-

u1 y1
v1

f1

L Ψ

Figure 3.7: Static Nonlinearity with a LTI System Augmented to its Input

state amplitudes of the fundamental components in y (for the system in Figure 3.6)

and y1, respectively. Choose A1 so that Υ1 = Υ, i.e. A1 :=
1

|L(jω)|
. This can be seen by

observing that in the steady state, v1(t) is a sinusoid with amplitude |L(jω)| |A1ū| =
|ū| and frequency w. Let {a1n

}∞n=0 and {b1n
}∞n=1 be the Fourier coefficients of the

steady state of y1. For this case, Υ1 :=
√

|a11 |2 + |b11 |2 =
√

|a1|2 + |b1|2 = Υ. This

constraint is necessary in order to properly compare the distortions of both systems.

Since Ψ is static, its distortion depends only on the amplitude of v1(t). Equations

(3.5) and (3.6) yield

THD1 (Υ1, ω) :=

√

∑∞
n=2

(

|a1n
|2 + |b1n

|2
)

∑∞
n=1

(

|a1n
|2 + |b1n

|2
)
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=

√

∑∞
n=2

(

|an|2 + |bn|2
)

∑∞
n=1

(

|an|2 + |bn|2
) = THD(Υ, ω) (3.14)

and

THDA1 (Υ1, ω) :=

√

∑∞
n=2

(

|a1n
|2 + |b1n

|2
)

|a11 |2 + |b11 |2

=

√

∑∞
n=2

(

|an|2 + |bn|2
)

|a1|2 + |b1|2
= THDA (Υ, ω) , (3.15)

respectively. Therefore, both THD and THDA are invariant to augmenting a linear

system to the input of a static nonlinearity.

Next, Figure 3.8 shows another interconnection where L is instead augmented to

the output of Ψ.

y

f
v2Ψ2

2

2u L

Figure 3.8: Static Nonlinearity with a LTI System Augmented to its Output

In this case, y2 = Lv2 = LΨ(u2) =: f2(u2). Define {a2n
}∞n=0 and {b2n

}∞n=1 to be the

Fourier coefficients of the steady state of y2. Let u2 := A2u(t), where u(t) := ū sinωt

and A2 is a constant chosen so that Υ2 :=
√

|a21 |2 + |b21 |2 = Υ. Furthermore, define

{ã2n
}∞n=0 and

{

b̃2n

}∞

n=1
to be the Fourier coefficients of v2. Now,

THD2 (Υ2, ω) :=

√

∑∞
n=2

(

|a2n
|2 + |b2n

|2
)

∑∞
n=1

(

|a2n
|2 + |b2n

|2
)

=

√

√

√

√

√

√

√

∑∞
n=2 |L(jωn)|

2

(

|ã2n
|2 +

∣

∣

∣
b̃2n

∣

∣

∣

2
)

∑∞
n=1 |L(jωn)|

2

(

|ã2n
|2 +

∣

∣

∣
b̃2n

∣

∣

∣

2
)

=

√

√

√

√

√

√

√

∑∞
n=2 |L(jωn)|

2

(

|ã2n
|2 +

∣

∣

∣
b̃2n

∣

∣

∣

2
)

|a1|2 + |b1|2 +
∑∞

n=2 |L(jωn)|
2

(

|ã2n
|2 +

∣

∣

∣
b̃2n

∣

∣

∣

2
)
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6=
√

∑∞
n=2

(

|an|2 + |bn|2
)

∑∞
n=1

(

|an|2 + |bn|2
) = THD(Υ, ω) (3.16)

and

THDA2 (Υ2, ω) :=

√

∑∞
n=2

(

|a2n
|2 + |b2n

|2
)

|a21 |2 + |b21 |2

=

√

√

√

√

√

∑∞
n=2 |L(jωn)|

2

(

|ã2n
|2 +

∣

∣

∣
b̃2n

∣

∣

∣

2
)

|a1|2 + |b1|2

6=
√

∑∞
n=2

(

|an|2 + |bn|2
)

|a1|2 + |b1|2
= THDA (Υ, ω) . (3.17)

Therefore, the measures are not invariant to augmenting a linear system to the output

of a static nonlinearity.

Finally, consider the interconnection illustrated in Figure 3.9 where the output of

Ψ is summed with the output of L, while both are driven with u3.

L

u3 Σ y3

f3

v3Ψ

Figure 3.9: Static Nonlinearity Summed with a LTI System

For this case, y3 = Ψ(u3) + Lu3 =: f3(u3). The Fourier coefficients of the steady

state of y3 can be computed and are defined to be {a3n
}∞n=0 and {b3n

}∞n=1. Let u3 :=

A3u(t), where u(t) := ū sinωt and A3 is a properly picked constant so that Υ3 :=
√

|a31 |2 + |b31 |2 = Υ. Let {ã3n
}∞n=0 and

{

b̃3n

}∞

n=1
be the Fourier coefficients of v3.

This gives

THD3 (Υ3, ω) :=

√

∑∞
n=2

(

|a3n
|2 + |b3n

|2
)

∑∞
n=1

(

|a3n
|2 + |b3n

|2
)
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=

√

√

√

√

√

√

√

∑∞
n=2

(

|ã3n
|2 +

∣

∣

∣
b̃3n

∣

∣

∣

2
)

|a1|2 + |b1|2 +
∑∞

n=2

(

|ã3n
|2 +

∣

∣

∣
b̃3n

∣

∣

∣

2
)

6=
√

∑∞
n=2

(

|an|2 + |bn|2
)

∑∞
n=1

(

|an|2 + |bn|2
) = THD(Υ, ω) . (3.18)

and

THDA3 (Υ3, ω) :=

√

∑∞
n=2

(

|a3n
|2 + |b3n

|2
)

|a31 |2 + |b31 |2

=

√

√

√

√

√

∑∞
n=2

(

|ã3n
|2 +

∣

∣

∣
b̃3n

∣

∣

∣

2
)

|a1|2 + |b1|2

6=
√

∑∞
n=2

(

|an|2 + |bn|2
)

|a1|2 + |b1|2
= THDA (Υ, ω) . (3.19)

Note that Υ3 =

√

|L(jω)|2 |A3ū|2 + |ã31 |2 +
∣

∣

∣
b̃31

∣

∣

∣

2

. As the equations illustrate, THD

and THDA are not invariant to summing the output of L to the output of Ψ, when

both are driven by the same input.

As can be seen by the previous 3 cases, even though the only nonlinear element in

the interconnections f1, f2, and f3 was always Ψ, the distortions were not necessarily

the same as those for the map y = Ψ(u).

3.4 Harmonic Distortion: Effect of Feedback

3.4.1 Static Feedback

Consider the feedback interconnection with a nonlinear function Ψ and constant

gain K, as shown in Figure 3.10.

Note that yc is a function of r, and it is implicitly given by the equation

yc = Ψ(K · r −K · yc) . (3.20)
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r u yK
+

-
Σ cΨ

Figure 3.10: Static Nonlinearity in Constant Gain Feedback

More precisely, for a given r, yc(r) is the number that solves the equation

yc(r) = Ψ (K · r −K · yc(r)) . (3.21)

It is useful to study how “linear” the relationship yc(r) is. This is done by differ-

entiating yc with respect to r (=: dyc

dr
) and observing how “constant” that is.

Using the chain rule, (3.21) is differentiated on both sides (with respect to r) to

get
dyc
dr

= Ψ′(u)|u=Kr−Kyc(r)

[

K −K
dyc
dr

]

, (3.22)

where Ψ′(u)|u=Kr−Kyc(r)
is the derivative of Ψ evaluated at u = Kr−Kyc(r). Solving

for dyc

dr
gives

dyc
dr

=
Ψ′K

1 + Ψ′K
, (3.23)

which is the complementary sensitivity function.

So, if Ψ′K is large, then dyc

dr
is “more constant” than Ψ′. In other words, yc(r)

is more linear than Ψ(u). This is the basic reason that feedback can reduce the

nonlinear distortion of a component, i.e. it has a linearizing effect.

3.4.2 Dynamic Feedback

The analysis in this section is based on the treatment given in [27], with some

modifications. Let the static nonlinearity in Figure 3.6 be given by

Ψ(u) := u+ εΨ̃(u), (3.24)

where ε ∈ R is small and Ψ̃(u) is a nonlinear function satisfying
∫ 2π

0

Ψ̃(sin(x)) sin(x) dx = 0. (3.25)



35

Consider the closed-loop system in Figure 3.11, where C is a LTI system. Assume

that C is such that the closed-loop system produces bounded yc for bounded r.

r u yC
+

-
Σ cΨ

Figure 3.11: Static Nonlinearity in Dynamic Feedback

The loop equation is implicit in yc where

yc(r) = Ψ (C · r − C · yc(r))

= C · r − C · yc(r) + εΨ̃(C · r − C · yc(r))

=
C

1 + C
r +

1

1 + C
εΨ̃(C · r − C · yc(r)). (3.26)

Note that (3.26) is implicit in ε, as well. One way to obtain an explicit approximation

is to perform a Taylor series expansion on yc as a function of ε about ε = 0 [27].

Considering only terms up to first-order (in ε) yields

yc(r) ≈
C

1 + C
r +

1

1 + C
εΨ̃(

C

1 + C
r) =: y(1)c (r). (3.27)

Setting ε = 0 in (3.27) gives

y(1)c (r)
∣

∣

ε=0
=

C

1 + C
r =: ȳc(r). (3.28)

Similarly, Figure 3.12 shows a system where T := C
1+C

.

T yr oΨ

Figure 3.12: Pre-Filtered Static Nonlinearity

So,

yo(r) = Ψ(Tr) = Tr + εΨ̃(Tr)

=
C

1 + C
r + εΨ̃(

C

1 + C
r). (3.29)
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Setting ε = 0 yields

yo(r)|ε=0 =
C

1 + C
r =: ȳo(r). (3.30)

Given r := r̄ sin( 2π
T
), examining (3.27) and (3.29), and realizing that Ψ̃ is static

reveals that y
(1)
c and yo are periodic with period T , in the steady state. Their Fourier

decompositions can be computed using (3.1) and (3.2) to be

y(1)c (t) := ac0 +
∞
∑

n=1

acn cos
2π

T
nt+

∞
∑

n=1

bcn sin
2π

T
nt, (3.31)

yo(t) := ao0 +
∞
∑

n=1

aon
cos

2π

T
nt+

∞
∑

n=1

bon
sin

2π

T
nt, (3.32)

respectively. Note that the amplitudes of the fundamental components in both y
(1)
c

and yo are the same (from (3.25)), i.e. Υc :=
√

|ac1|2 + |bc1|2 =
√

|ao1|2 + |bo1|2 =: Υo.

Let

eo := yo − ȳo = εΨ̃(
C

1 + C
r), (3.33)

ec := yc − ȳc =
1

1 + C
εΨ̃(C · r − C · yc(r)), (3.34)

e(1)c := y(1)c − ȳc =
1

1 + C
εΨ̃(

C

1 + C
r). (3.35)

From (3.33) and (3.35),

e(1)c = Seo, (3.36)

where S := 1
1+C

is referred to as the sensitivity function for the system in Figure 3.11,

when ε ≡ 0.

Note that eo is periodic in the steady-state (from (3.33) and recalling that Ψ̃ is

static). Therefore, in the steady-state, e
(1)
c will be periodic, as well. So, using (3.25),

(3.31), (3.32), (3.33), and (3.35), the Fourier decompositions of e
(1)
c and eo are given

by

e(1)c (t) = ac0 +
∞
∑

n=2

acn cos
2π

T
nt+

∞
∑

n=2

bcn sin
2π

T
nt, (3.37)

eo(t) = ao0 +
∞
∑

n=2

aon
cos

2π

T
nt+

∞
∑

n=2

bon
sin

2π

T
nt, (3.38)
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respectively, i.e. they have the same expansions as y
(1)
c and yo, except that the

fundamental components are removed. Then, for {k}∞k=2,

ac0 = S(0)ao0 , (3.39)

ack + bckj = S

(

j
2πk

T

)

(aok
+ bok

j) , (3.40)

where j :=
√
−1.

Next, augment a LTI system W to the output of the system in Figure 3.11, as

shown in Figure 3.13. Note that v = Wyc and v(1) := Wy
(1)
c .

ycr u
C

+

-
Σ W vΨ

Figure 3.13: Static Nonlinearity in Dynamic Feedback with Augmented Weight

Then, (3.39) and (3.40) are modified such that for {k}∞k=2,

âc0 := W (0)ac0 = W (0)S(0)ao0 , (3.41)

âck + b̂ckj := W

(

j
2πk

T

)

(ack + bckj)

= W

(

j
2πk

T

)

S

(

j
2πk

T

)

(aok
+ bok

j) . (3.42)

It should be noted that âc0 , {âcn}∞n=2, and
{

b̂cn

}∞

n=2
are the Fourier coefficients of

We
(1)
c .

Define the 2-norm for periodic signals with period T as

‖y‖22 =
1

T

∫ T

0

|y(t)|2 dt. (3.43)

Applying Parseval’s relationship for periodic signals to eo and We
(1)
c yields [42]

‖eo‖22 = |ao0|2 +
∞
∑

n=2

(

|aon
|2 + |bon

|2
)

, (3.44)

∥

∥We(1)c

∥

∥

2

2
= |âc0|2 +

∞
∑

n=2

(

|âcn |2 +
∣

∣

∣
b̂cn

∣

∣

∣

2
)

, (3.45)
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respectively. Therefore, from (3.41) and (3.42),

∥

∥We(1)c

∥

∥

2

2
=

|W (0)S(0)ao0|2 +
∞
∑

n=2

∣

∣

∣

∣

W

(

j
2πn

T

)

S

(

j
2πn

T

)∣

∣

∣

∣

2
(

|aon
|2 + |bon

|2
)

,

|âc0|2 +
∞
∑

n=2

(

|âcn|2 +
∣

∣

∣
b̂cn

∣

∣

∣

2
)

=

|W (0)S(0)ao0|2 +
∞
∑

n=2

∣

∣

∣

∣

W

(

j
2πn

T

)

S

(

j
2πn

T

)∣

∣

∣

∣

2
(

|aon
|2 + |bon

|2
)

. (3.46)

From (3.41), |âc0|2 = |W (0)S(0)ao0|2. So, (3.46) simplifies to

∞
∑

n=2

(

|âcn|2 +
∣

∣

∣
b̂cn

∣

∣

∣

2
)

=
∞
∑

n=2

∣

∣

∣

∣

W

(

j
2πn

T

)

S

(

j
2πn

T

)∣

∣

∣

∣

2
(

|aon
|2 + |bon

|2
)

, (3.47)

√

√

√

√

∞
∑

n=2

(

|âcn|2 +
∣

∣

∣
b̂cn

∣

∣

∣

2
)

=

√

√

√

√

∞
∑

n=2

∣

∣

∣

∣

W

(

j
2πn

T

)

S

(

j
2πn

T

)∣

∣

∣

∣

2
(

|aon
|2 + |bon

|2
)

≤ ‖WS‖∞

√

√

√

√

∞
∑

n=2

(

|aon
|2 + |bon

|2
)

. (3.48)

Dividing (3.48) by Υc = Υo, and manipulating gives
√

∑∞
n=2

(

|âcn|2 +
∣

∣

∣
b̂cn

∣

∣

∣

2
)

Υc

≤ ‖WS‖∞

√

∑∞
n=2

(

|aon
|2 + |bon

|2
)

Υo

,

∣

∣W
(

j 2π
T

)∣

∣

√

∑∞
n=2

(

|âcn|2 +
∣

∣

∣
b̂cn

∣

∣

∣

2
)

∣

∣W
(

j 2π
T

)∣

∣Υc

≤ ‖WS‖∞

√

∑∞
n=2

(

|aon
|2 + |bon

|2
)

Υo

. (3.49)

From (3.6), the distortions for the systems in Figures 3.12 and 3.13, when yo and v
(1)

are the outputs due to r := r̄ sin (ωt) and ω := 2π
T
, are given by

THDAo(Υo, ω) :=

√

∑∞
n=2

(

|aon
|2 + |bon

|2
)

Υo

, (3.50)

THDAc(Υ̂c, ω) :=

√

∑∞
n=2

(

|âcn |2 +
∣

∣

∣
b̂cn

∣

∣

∣

2
)

Υ̂c

, (3.51)
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respectively, where Υ̂c :=

√

|âc1|2 +
∣

∣

∣
b̂c1

∣

∣

∣

2

is the amplitude of the fundamental com-

ponent in v(1). Note that Υ̂c = |W (jω)|Υc. Substituting into (3.49) yields

|W (jω)|THDAc

(

Υ̂c, ω
)

≤ ‖WS‖∞THDAo (Υo, ω) (3.52)

Choose W such that |W (jω)|
∣

∣

ω∈[ω1,ω2] = 1, while trailing off to zero elsewhere,

where [ω1, ω2] is the frequency range of interest. Then, for ω ∈ [ω1, ω2],

Υ̂c = |W (jω)|Υc = Υc, (3.53)

|W (jω)|THDAc

(

Υ̂c, ω
)

= THDAc (Υc, ω) . (3.54)

Finally, (3.52) becomes

THDAc (Υc, ω) ≤ ‖WS‖∞THDAo (Υo, ω) =: THDAcp (Υc, ω) , ω ∈ [ω1, ω2] . (3.55)

3.4.3 Examples

To illustrate the linearizing effect of feedback, three examples have been devised

(two for static and one for dynamic feedback) using the nonlinear functions (3.11)

and (3.12), which are plotted in Figures 3.2 and 3.4.

Static Feedback

Implementing the interconnection shown in Figure 3.10 on each nonlinearity using

a feedback gain of K := 5, the closed-loop relationship is given implicitly by (3.21).

The closed-loop maps and their corresponding distortion plots (using THDA as the

measure) are shown in Figures 3.14, 3.15, 3.16, and 3.17. Note that the plots in

Figures 3.15 and 3.17 compare the distortion in the output of the feedback intercon-

nection with that of Figure 3.12, where T := K
1+K

.

As shown in the figures, the linearizing effect is significant, with THDAcp ≈ THDAc

for small Υ.
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Figure 3.14: Effect of Static Feedback on the Piecewise Linear Map (K = 5)

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

ϒ

D
is

to
rt

io
n

THD
Ao

 
THD

Ac
 

THD
Acp

Figure 3.15: Distortion Plot for the Closed-Loop System with the Piecewise Linear
Map (Static Feedback: K = 5)
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Figure 3.16: Effect of Static Feedback on the Cubic Polynomial Map (K = 5)
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Figure 3.17: Distortion Plot for the Closed-Loop System with the Cubic Polynomial
Map (Static Feedback: K = 5)
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Dynamic Feedback

Consider the feedback interconnection shown in Figure 3.11, where the static

nonlinear map (3.12) is in feedback with a dynamic system C. The distortion in the

output of this system (=: THDAc) will be compared with the distortion in the output

of the system shown in Figure 3.12 (=: THDAo), where the map (3.12) is pre-filtered

by the linear system T (the complementary sensitivity function when ε ≡ 0). In this

example,

C(s) :=
490s(s+ 6.65)(s+ 375.85)

(s+ 10)2(s+ 250)2
, (3.56)

S(s) :=
1

1 + C
=

(s+ 10)2(s+ 250)2

(s+ 5)2(s+ 500)2
, (3.57)

T (s) :=
C

1 + C
=

490s(s+ 6.65)(s+ 375.85)

(s+ 5)2(s+ 500)2
, (3.58)

are all stable. The frequency response of S (shown in Figure 3.18) illustrates the

distortion reduction potential in the region between 0.1 Hz and 1 kHz. Simulating

10
−2

10
0

10
2

10
4

10
−1

10
0

Frequency [Hz]

M
ag

ni
tu

de

Figure 3.18: Frequency Response of S

the systems using sine-wave inputs and allowing the outputs to reach their steady
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states, Figure 3.19 shows the distortions for various frequencies and amplitudes. The

distortion reduction is most significant at frequencies where the magnitude of S was

small, e.g. the case for sine-wave inputs at 6 Hz. For sine-wave frequencies near

150 Hz, the distortion reduction was minimal. Furthermore, THDAcp shows good

agreement with THDAc for small Υ.

As shown by the examples, in the instances where the nonlinear distortion is low,

nonlinear distortion reduction can be incorporated as a control objective using linear

control theory by designing the controller for the system’s linearization such that the

magnitude of S is less than unity in the frequency range of interest. This is the

subject of Chapter 4.
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Figure 3.19: Distortion Plot for the Closed-Loop System with the Cubic Polynomial
Map (Dynamic Feedback)
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Chapter 4

Compensator Design

It was shown in Chapter 3 that to reduce the distortion in the output of a mildly

nonlinear system (i.e. very linear for small signals), it was sufficient to design a linear

feedback controller such that the magnitude of the sensitivity function S of the closed-

loop system’s linearization is smaller than unity, in the frequency range of interest.

This design process is the focus of this chapter.

Consider the control system shown in Figure 4.1 where C, dref , u, and p are the

controller to be designed, the system’s input signal, the control signal to the ampli-

fier, and the measurement of pressure for feedback, respectively. As shown, C has

refd

CController,
(Vented or Sealed)
Loudspeaker
Enclosed

u

measured
p

-

+
Σ K pAmplifier

α

Microphone

Loudspeaker System

Figure 4.1: The Implemented Loudspeaker Control System

the special structure for which K contains all the dynamics and α is a nonzero nor-
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malizing constant factor such that 1
α
is equal to the peak in the magnitude frequency

response of transfer function from u to p (for the system’s linearization). Also, the

dynamics of the loudspeaker system include that of the loudspeaker, amplifier, and

microphone. It should be noted that the exogenous disturbances and noises are not

shown in this figure. Also note that the pressure measurement is obtained via a mi-

crophone mounted as close to the loudspeaker’s cone as possible, without mechanical

interference. Locating it in this manner both minimizes the pure time-delay intro-

duced in the feedback loop and increases the static gain in the map from the pressure

near the cone’s surface to that at the microphone’s location.

The linear performance objective is to minimize the magnitude of S in the low

frequency region (typically from 20 Hz to 200 Hz). This must be achieved while

satisfying the following requirements:

1. Insensitivity to sensor noise.

2. Robustness of the closed-loop stability to:

• Unmodeled dynamics: Linear model fit vs. actual plant, changes in the

acoustic environment, aging, etc.

• Disturbances: Extraneous sounds (e.g. slamming doors, sound from other

loudspeakers), user touching the loudspeaker’s cone, etc.

4.1 Performance Improvement: µ-Design

The design approach follows the continuous-time domain, µ-Analysis and Synthe-

sis technique applied to Multi-Input, Multi-Output (MIMO) systems as proposed in

[60] and described in [43]. Figure 4.2 shows the general representation of the problem,

where P represents the known plant dynamics, K is the controller to be designed,

and ∆ is a problem dependent uncertainty. Hence, the interconnection containing

the pair (P,∆) represents the uncertain plant model.
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K

∆

e
z v

y u
dP

Figure 4.2: µ-Analysis and Synthesis Framework

The problem description is complete when the representation is combined with an

appropriate magnitude measure for matrix transfer functions and several key results.

The generalized system P contains three pairs of input/output variables: The control

inputs u(t) and the measured outputs y(t), the disturbances d(t) and performance

variables e(t), and the signals v(t) which contain unit-norm perturbations that are

fed back into P and the output signals z(t) feeding into the perturbation ∆. Any

linear interconnection of inputs and outputs can be cast into this general framework.

4.1.1 µ-Analysis

The goal is to find a non-conservative necessary and sufficient condition for robust

performance for the system in Figure 4.3 (derived from Figure 4.2).

∆

de
vz

M

Figure 4.3: µ-Analysis Framework

M(P,K) contains a 2×2 block-structured transfer functionM(s) which is defined

in terms of a 3× 3 partition of P (s) in the original interconnect in Figure 4.2 by

Mij(s) := Pij(s) + Pi3(s) [I −K(s)P33(s)]
−1K(s)P3j(s), i, j = 1, 2. (4.1)

Formulation (4.1) is referred to as a Linear Fractional Transformation of P through
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K, hence M(P,K). The following is true when the system shown in Figure 4.3 is

stable:

1. Nominal Performance is achieved if and only if

‖M22(jω)‖∞ < 1. (4.2)

2. Robust Stability is achieved if and only if

‖M11(jω)‖∞ < 1. (4.3)

3. Robust Performance is achieved if and only if

µ (M(jω)) < 1 ∀ω, (4.4)

where

µ (M(jω)) :=











min



















ε

∣

∣

∣

∣

∣

∣

∣

∣

∣

det (I − εXM(jω)) = 0

for someX = diag(∆1,∆2)

with σ̄ (∆i) < 1, ∀i





























−1

, (4.5)

i.e., µ is the reciprocal of the smallest scalar ε which makes I−εXM(jω) singular

for some X in a block diagonal perturbation set. µ is zero if no ε exists.

The function µ was defined in [15] for the observation that robust performance is

equivalent to robust stability in the presence of two perturbations ∆, and ∆p, which

are connected around M(P,K). Therefore, robust stability is guaranteed if and only

if

det (I − diag(∆,∆p)M(jω)) 6= 0 ∀ω. (4.6)

This is a tight condition for robust stability with respect to two perturbation blocks

(and equivalently, for robust performance). Since the definition in (4.5) can also be

used to test for stability with respect to many diagonal blocks (not just 2 × 2 block

structures), it can be utilized to test for robust stability with respect to plant sets

characterized by several unstructured perturbations (and at the same time, test for

robust performance, as well).
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4.1.2 µ-Synthesis

The synthesis problem is to find a controller K such that the performance objec-

tives are met under specified uncertainties. Figure 4.4 shows the synthesis framework

where the perturbations are normalized to unity and the normalizing factors are ab-

sorbed into P .

K

de
z v

uy
P

Figure 4.4: µ-Synthesis Framework

Partition P so that the map from

[

v

d

]

to

[

z

e

]

is described by





z

e



 = M(P,K)





v

d



 . (4.7)

The goal is to find a stabilizing controller such that

‖M(P,K)‖∞ < γ, (4.8)

where γ is the inverse of the minimum norm of the perturbation that causes the

closed-loop system to become unstable. This goal is referred to as the H∞ optimal

problem. Further details can be found in [20] and [17].

Combining the analysis and synthesis frameworks in a systematic fashion such

that theH∞ optimal control methods and the structured singular value (µ) theory are

used for synthesis and analysis, respectively, results in the µ-Analysis and Synthesis

algorithm. The method reduces to finding a stabilizing controller K and a scaling

matrix D that minimize ‖DM(P,K)D−1‖∞. In practice, this is solved by fixing

D and minimizing with respect to K (H∞ problem), then fixing the resulting K

and performing the minimization with respect to D (convex optimization problem),
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point-wise in frequency. The resulting D(jw) is then fit with a real-rational, stable,

and minimum phase invertible transfer function. The algorithm is repeated until a

suitable minimum is achieved. This is referred to as the D-K Iteration algorithm and

is explained in more detail in [60] and [4].

4.2 µ-Synthesis for the Loudspeaker System

4.2.1 System Interconnection Model

Figure 4.5 is a diagram for the closed-loop system model containing considerations

(in terms of weighting functions) which are necessary in achieving the design goals.

By opening the connections around ∆ and K (the dotted blocks) and combining

dref Wref

Wknoise

errW

eerr eu

nknoise

Wu

W∆

Gnom
+
-

p

+
+

u
+
+

α

K

∆

ΣΣ Σ
y

z

v

G

Figure 4.5: The Closed-Loop Interconnection Structure

the disturbance and error signals, the system is transformed into P , the open-loop

interconnection structure shown in Figure 4.6, which is suitable for the µ-framework

described in Section 4.1. Therefore, P is a 4 × 4 interconnection structure and the

z

y
e(2) P

v
d(2)
u

Figure 4.6: Transformed Interconnection Structure for the µ-Problem
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blocks and signals involved are defined as follows:

nknoise : noise at the controller’s input,

dref : reference command,

eerr : weighted error (sensitivity) signal,

eu: weighted control signal,

d(2): disturbance vector

[

nknoise

dref

]

,

e(2): error vector

[

eerr
eu

]

,

Gnom : nominal plant, which is the nominal loudspeaker system’s linearization,

G: uncertain plant,

W∆: multiplicative uncertainty weight,

Werr : error signal performance weight,

Wknoise : noise penalty weight,

Wu: control signal penalty weight, and

Wref : reference command weight.

4.2.2 Uncertainty and Performance Objectives Modeling

In order to accurately reflect the control objectives in the µ-framework, frequency-

dependent weights multiplying the appropriate signals are utilized, as shown in Figure

4.5. Figure 4.7 shows a set of weights used as an example to guide the following

description (these weights will be applied to a problem involving an actual loudspeaker

attached to a sealed enclosure, as detailed in Chapter 5):
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Uncertainty Modeling: The dashed block G in Figure 4.5 represents the lineariza-

tion of the “true” loudspeaker system, shown in Figure 4.1. The elements W∆

and ∆ parameterize the modeling uncertainty. The uncertainty model is re-

ferred to as the multiplicative uncertainty at the plant input which is described

by

G ∈ {Gnom (I +W∆∆) : ‖∆‖∞ ≤ 1} . (4.9)

Figure 4.7 shows the frequency response of W∆. The 4th-order, stable weight

reflects the modeling uncertainty along with the desired robustness. Reaching a

minimum magnitude of approximately 0.12 at 62 Hz, the closed loop system is

required to be impervious to at least a 12% variation in G over all frequencies,

up to 100% at low frequencies, and up to 10000% at high frequencies.

Performance Weight: Werr is used to reflect the desired closed-loop frequency re-

sponse of the system from dref to eerr (the weighted response of the closed-loop

sensitivity function S := 1
1+αGK

). Using this weight penalizes the magnitude

response of S such that it does not exceed that of W−1
err . The weight is formu-

lated so that the magnitude of S is required to be smaller than unity in the

frequency range of interest, hence achieving a reduction in the loudspeaker’s

pressure distortion. Also, define T := αGK
1+αGK

to be the complementary sensi-

tivity function of the closed-loop system. Then, the identity S + T = 1 always

holds. Hence, |S(jω)| = |1− T (jω)| ∀ω ∈ R. Therefore, penalizing |S(jω)| so
that it is small and flat in the desired frequency range penalizes |T (jω)| so that

it is flat in that region, as well. Since α is a nonzero constant, flattening the

frequency response of T also flattens that of 1
α
T , which is the transfer function

from dref to p. Taking these issues into account, the weight shown in Figure

4.7 was designed to be a stable, 4th-order transfer function. The magnitude

of W−1
err is less than unity from 31 Hz to 256 Hz and achieves a minimum of

approximately 0.6 at 89 Hz.
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Reference Signal Weight: Wref is designed to reflect the ideal response to the

reference command signal dref . Since the control objective involves tracking

dref itself, Wref := 1.0 (i.e. no frequency shaping of the reference signal), as

shown in Figure 4.7.

Noise Weight: Noise contaminations from the measured pressure, plant, and con-

troller is considered. The magnitude of the stable, 3rd-order Wknoise shown in

Figure 4.7 is treated as the upper bound for the actual noise present in y (Figure

4.5).

Control Signal Weight: The control signal is required to have an upper bound to

prevent the amplifier from saturating, with possible damage to the loudspeaker.

As a result, the 3rd-order, stable Wu is formulated such that the magnitude of

W−1
u represents the upper limit of the magnitude of control signal u when dref =

1, as shown in Figure 4.7. By limiting the control action at high frequencies,

this weight further helps in high-frequency noise rejection and in shaping the

high frequency response of S.

4.3 Non-Minimum Phase Issues

In the case when the plant G contains non-minimum phase zeros, care must be

taken when designing the performance weights [16], [69]. Let [ω1, ω2] denote the

frequency range for the spectrum of dref and define

b1 := max
ω1≤ω2

|S(jω)| , (4.10)

b2 := ‖S‖∞ . (4.11)

The control objective is such that b1 ¿ 1 while b2 is not allowed to be too large. Note

that b2 ≥ 1, since unity is the value of S at infinite frequency. Suppose that the plant

has a zero at znp := σ0+ jω0, where σ0 > 0 (non-minimum phase). Then, S(znp) = 1,
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regardless of the controller. Define

c1 :=
1

π

∫

ω∈[−ω2,−ω1]∪[ω1,ω2]

σ0

σ2
0 + (ω − ω0)

2 dω, (4.12)

c2 :=
1

π

∫

ω/∈[−ω2,−ω1]∪[ω1,ω2]

σ0

σ2
0 + (ω − ω0)

2 dω. (4.13)

Note that c1 and c2 are positive constants that only depend on ω1, ω2, and znp. Under

these conditions, it can be shown that [16]

b2 ≥
(

1

b1

)

c1
c2

. (4.14)

This implies that making b1 ¿ 1 simultaneously makes b2 À 1.

In addition, define αGK to be the open-loop gain of the controlled loudspeaker

system. Let {pi} denote the set of poles of αGK such that < (pi) > 0 (unstable

poles). Assume that the relative degree (:= the degree of the denominator minus the

degree of the numerator) of αGK is at least 2. Then a formula for the area under

the graph of log10 |S(jω)| vs. ω is given by [16]

∫ ∞

0

log10 |S(jω)| dω = π log10(e)

(

∑

i

< (pi)

)

, (4.15)

implying that the area under log10 |S(jω)| is conserved. This means that if |S(jω)| ¿
1 for ω ∈ [ω1, ω2], then |S(jω)| > 1 elsewhere.

Also,

|Werr (znp)| = |Werr (znp)S(znp)| ≤ ‖WerrS‖∞ . (4.16)

Therefore, a necessary condition for the performance objective ‖WerrS‖∞ < 1 to

be achievable is that |Werr (znp)| < 1. This puts constraints on the performance

bandwidth. To show this consider the following example.

Let the plant G be strictly proper (i.e. G(∞) = 0). The objective is to design a

controller such that the magnitude of the sensitivity function S lies below that of the

bound

Q(s) :=
2(s+ ωl)

s+ ωp
, (4.17)



56

where ωp and ωl are in R+ and ωp > ωl. Define ωB so that |Q(jωB)| = 1. Then,

the bound requires a reduction in the magnitude of S for all frequencies up to ωB,

demands at least a level of ωp

2ωl
reduction for all frequencies up to ωl, and allows for a

worst-case peak of 2 for ‖S‖∞. So, a stable, minimum-phase Werr is chosen such that

Werr (s) := Q−1(s) =
s+ ωp

2(s+ ωl)
. (4.18)

Note that |Werr (jωB)| = 1, as well. This gives

ωB =

√

ω2
p − 4ω2

l

3
. (4.19)

The frequency responses of both the performance bound andWerr are shown in Figure

4.8. Suppose that G has a zero at znp := σ0 + jω0, where σ0 > 0. Assume that there
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Figure 4.8: Performance Bound and Werr (ωl = 10 and ωp = 1000, for this plot)

is a stabilizing controller K such that ‖WerrS‖∞ < 1. Then, |Werr (znp)| < 1 has to

hold if the performance objective is to be achieved. Using (4.18) yields

1

2

∣

∣

∣

∣

σ0 + jω0 + ωp
σ0 + jω0 + ωl

∣

∣

∣

∣

< 1. (4.20)
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Substituting (4.19) and simplifying gives

ω2
B <

(

σ2
0 + ω2

0

)

− 2

3
σ0 (ωp − 4ωl) . (4.21)

Note that if ω0 = 0 (i.e. the zero is real), the relationship reduces to (after some

manipulation)

σ0 >
√

3ω2
B + 4ω2

l − 2ωl. (4.22)

Taking the limit as ωl → 0 gives

ωB <
σ0√
3
. (4.23)

Coupling the above facts, the frequency response of the magnitude of S will contain

peaks larger than unity, if G is non-minimum phase. Although inevitable, this is not

desirable, since the performance is degraded there. This design tradeoff requires

careful attention in the choice of Werr .

Therefore, Werr is chosen so that the bandwidth limits set by the non-minimum

phase zeros are not exceeded, while ensuring that the unavoidable peaks above unity in

the magnitude response of the sensitivity function are not too large. For the example

weight in Figure 4.7, Werr was designed for a plant with dynamics exhibiting non-

minimum phase zeros at 63 ± 46.4j and 5723 rad/s. Therefore, |Werr (jω)| < 1 for

frequencies in the intervals [0, 31 Hz) and (256 Hz,∞), while the weight allows for

peaks (larger than unity) in the magnitude of S of up to 2.3 for frequencies in the

interval [0, 31 Hz) and up to 1.9 in the interval (256 Hz,∞).
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Chapter 5

Applications and Examples

In this chapter, the results of Chapters 2, 3, and 4 are illustrated by means of

three loudspeaker examples: one based on the loudspeaker model of Chapter 2 and

two based on real systems. In each example, a µ-controller is designed and the

performance improvement is determined. The data is compared with the theoretical

predictions and the suitability and usefulness of the developed theory to loudspeaker

systems is illustrated.

5.1 Loudspeaker Model in a Vented Enclosure

Figure 5.1 shows a schematic of a loudspeaker in an insulated and vented enclosure

attached to an infinite baffle in an acoustic half-space, where u is the voice-coil voltage,

p and pf are pressures measured at (x = 0, y = 0, z = 0.032) (in meters) (i.e. 1.25

inches from the cone’s surface) and (x = 0, y = −0.15, z = 1) meters, respectively.

A cylindrical duct mounted to the enclosure’s vent has its centerline located at (x =

0, y = −0.29) meters.

Using the loudspeaker model from Chapter 2, Figure 5.2 shows a schematic of the

interconnection describing the loudspeaker model in a vented enclosure, where the

components and signals are defined as
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Figure 5.1: Loudspeaker in a Vented Enclosure

Ω1, Ω2: cross sectional areas of the faces of the loudspeaker’s cone and duct, respec-

tively,

z1, ż1: cone’s position and velocity, respectively,

z20, ż20, z̈20: position, velocity, and acceleration of the air particles on the face of the

duct lying inside the enclosure, respectively,

z̈2L
: acceleration of the air particles on the face of the duct (baffle side),

pb: pressure inside the enclosure (=: pb (z1, z20)),

Fb: force exerted on the surface of the loudspeaker’s cone (facing the inside of the

enclosure), due to pb (Fb := Ω1pb),

F1, F2: forces exerted on the surface of the loudspeaker’s cone and the face of the

duct (baffle side), respectively, due to the acoustic environment, and

p2: pressure acting on the face of the duct (baffle side), due to F2 (p2 :=
F2
Ω2
).
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Figure 5.2: Schematic of the Loudspeaker Model in a Vented Enclosure

As the figure illustrates, the system is comprised of several components:

Loudspeaker: voice-coil loudspeaker attached to one of the enclosure’s openings,

with the following parameter values:

a1: radius of the cone = 0.163 m,

Ω1: cross-sectional area of the cone := πa21 = 0.083 m2,

m: moving mass = 0.117 kg,

Le: voice-coil inductance = 7× 10−4 H,

Re: voice-coil resistance = 3 Ω,

Bl0: linear force factor = 30.66 T ·m,

Bl1: nonlinear force factor = 107 m−4,

κ: exponent in the nonlinear force term = 4,

k0: linear spring constant = 5376 N/m,

k1: quadratic spring coefficient = 0,
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k2: cubic spring coefficient = 2× 108 N/m3, and

Rm: mechanical damping factor = 12.83 N · s/m.

Duct: cylindrical duct attached to one of the enclosure’s vents with

a2: radius of the duct’s face = 0.108 m,

Ω2: cross-sectional area of the duct’s face := πa22 = 0.037 m2,

L: duct’s length = 0.381 m (15 inches),

N : number of finite-difference divisions in the duct = 40,

ρ0: equilibrium density of the air inside the duct = 1.21 kg/m3, and

c: speed of sound for the air inside the duct, at equilibrium = 343 m/s.

Vented Enclosure: enclosure with two ports, one for the loudspeaker and another

for the duct with the following:

Vb0: enclosed volume when the cone and vent are at rest = 0.17 m3,

Pb0: equilibrium pressure of the enclosed air = 1.0133× 105 Pa,

Ω1: cross sectional area of the enclosure’s opening for the loudspeaker’s cone =

0.083 m2,

Ω2: cross sectional area of the enclosure’s opening for the duct = 0.037 m2, and

γ: ratio of the specific heat at a constant pressure to the specific heat at a

constant volume for air = 1.4.

Acoustic Half-Space: linear map from cone and vent motion to p, pf , F1, and F2

that addresses the coupling of the acoustic environment to the loudspeaker and

duct (modeled as a half-space with two vibrating pistons attached to an infinite

baffle), as shown in Figure 5.3 with

ρ0: equilibrium density of the air in the half-space = 1.21 kg/m,



62

c: speed of sound for the air in the half-space, at equilibrium = 343 m/s,

˙z2L
: velocity of the air particles on the face of the duct (baffle side),

H1: the dynamics (with time delays removed) from the cone’s velocity to p, pf ,

F1, and F2,

H2: the dynamics (with time delays removed) from the velocity of the air par-

ticles on the face of the duct (baffle side) to p, pf , F1, and F2,

H̃2: the dynamics (with time delays removed) from the acceleration of the air

particles on the face of the duct (baffle side) to p, pf , F1, and F2,

τ1: time delay between the cone’s velocity and p, computed as the time it takes

a pressure wave to traverse the shortest distance between the cone’s surface

(at rest) and p
(

τ1 =
0.032
c

= 9.3× 10−5 seconds
)

,

τ2: time delay between the cone’s velocity and pf (τ2 =
1
c
= 2.9×10−3 seconds),

τ3: time delay between the cone’s velocity and F2 (or between the velocity of

the air particles at on the face of the duct (baffle side) and F1), calculated

using the shortest distance between the edge of the cone and that of the

vent
(

τ3 =
0.29−a1−a2

c
= 5.6× 10−5 seconds

)

,

τ4: time delay between the velocity of the air particles on the face of the duct

(baffle side) and p

(

τ4 =

√
0.0322+(0.29−a2)

2

c
= 5.4× 10−4 seconds

)

, and

τ5: time delay between the velocity of the air particles on the face of the duct

(baffle side) and pf

(

τ5 =

√
12+(0.29−0.15−a2)

2

c
= 2.9× 10−3 seconds

)

.

The transfer functions H1 and H2 were obtained using the method outlined

in Section 2.2. Both were stable, 48th-order LTI systems. Note that even

though H̃2 contains an extra integrator, it is still a 48th-order system. This is

because given an nth-order, state-space realization for the dynamics of H2, with

H2(0) = 04, the results in Appendix C imply that there exists an nth-order,

state-space realization for H̃2. Both H1 and H̃2 can be found in Appendix D.
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Figure 5.3: The Acoustic Half-Space Model

Even though the response from u to pf is most important, p will be used for evaluation

as well as the pressure output signal for feedback and u will be used as the input, while

pf will only be used to monitor the performance at its location. This is due to the

fact that using pf as the feedback signal will introduce a significant time delay in the

feedback loop, making it difficult to design a controller with satisfactory performance.

5.1.1 Model Simulation

In order to measure the distortion in the loudspeaker’s outputs, fixed-frequency,

large amplitude sine-wave input simulations were performed. The outputs were al-

lowed to reach their steady state, before the distortion values were calculated. Figures

5.4 and 5.5 show the distortion (=: THDAo) for p and pf , respectively, at various ampli-

tudes and frequencies. As illustrated, the nonlinear nature of the loudspeaker system

is indicated by the presence of substantial distortion, especially at low frequencies.
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Figure 5.4: The Harmonic Distortion in p for the Vented Loudspeaker Model
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Figure 5.5: The Harmonic Distortion in pf for the Vented Loudspeaker Model



66

5.1.2 Model Linearization

In order to apply linear control theory and design a µ-controller for the loud-

speaker, a linearization (about 0) of the model must be obtained. A linearization of

(2.4) can be obtained by setting Bl1 ≡ 0. Hence,

Bl(z1) ≈ Bl0. (5.1)

Furthermore, (2.5) can be linearized by setting k1 ≡ 0 and k2 ≡ 0, which gives

Fk(z1) ≈ k0z1. (5.2)

Also, the enclosure equation (2.28) is linearized by performing a Taylor series

expansion about (z1, z20) = (0, 0) and considering only the terms up to first-order,

i.e. [35]

pb (z1, z20) ≈ pb(0, 0) +
∂pb (z1, z20)

∂z1

∣

∣

∣

∣

(z1,z20)=(0,0)

z1 +
∂pb (z1, z20)

∂z20

∣

∣

∣

∣

(z1,z20)=(0,0)

z20

=
−γPb0

Vb0
(Ω1z1 + Ω2z20) . (5.3)

Substituting into (2.7) and (2.8) yields the linearized loudspeaker equations

d2z1
dt2

≈ 1

m

[

Bl0i− k0z1 −Rm
dz1
dt
− γPb0Ω1

Vb0
(Ω1z1 + Ω2z20)− F1

]

, (5.4)

di

dt
≈ 1

Le

[

u−Rei−Bl0
dz1
dt

]

. (5.5)

In addition, the pure time delays contained in the half-space map were replaced

with their respective, 1st-order Padé approximations, i.e. the 1st-order approximation

for a τ second delay [22]

e−τs ≈ 1− τs/2

1 + τs/2
. (5.6)

Once the linearized equations and time-delay approximations were utilized in the

interconnection shown in Figure 5.2 (along with the equations that were already

linear, i.e. the equations for the duct and acoustic half-space), the frequency response

of the system’s linearization was computed, as illustrated in Figure 5.6.
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Next, a 12th-order, Single Input, Single Output (SISO) frequency domain fit (=:

Gnom) was obtained for the linearized map from u to p using a frequency-domain,

weighted least-squares algorithm and its frequency response is shown in Figure 5.7.

The plot shows a good fit throughout the frequency region between 1 Hz and 10

kHz. Also, the plant dynamics exhibit non-minimum phase zeros at 0.41, 22750,

5359±70624j, and 76359 rad/s, which may limit the allowable performance bandwidth

of the closed-loop system. Note that only the response from u to p was fit, since it is

the transfer function required for the control design (recall that the transfer function

from u to pf is just used for monitoring the loudspeaker’s performance at the 1 meter

location).
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5.1.3 Control Design: Uncertainty and Performance Objec-

tive Weights

Using the fit Gnom , a controller can be designed using the methods of Chapter

4. Once a controller is designed, it is implemented as shown in Figure 4.1. In this

example, the amplifier and microphones are replaced with unity gain blocks, i.e. the

dynamics of the plant G are entirely due to the vented loudspeaker model.

As described in Section 4.2.2, frequency-domain weights applied to the intercon-

nection shown in Figure 4.5 have to be chosen to properly reflect the control objectives.

The following weights (with frequency responses shown in Figure 5.8) have been care-

fully designed to extract the most performance out of the closed-loop interconnection:

Uncertainty Weight: The uncertainty weight, W∆ was chosen to be a 5th-order,

stable transfer function. Reaching a minimum in magnitude of approximately

0.30 at 128 Hz, the closed loop system was required to be impervious to at least

a 30% variation in G over all frequencies, up to 18000% at low frequencies, and

up to 13000% at high frequencies.

Performance Weight: The magnitude of Werr (4th-order, stable transfer function)

was chosen to be larger than unity in the region between 26 Hz and 246 Hz.

This penalizes the magnitude of the sensitivity function S so that it will be

smaller than unity in that region. Furthermore, the weight was designed such

that the bandwidth limit set by the non-minimum phase zeros was not exceeded,

while minimizing (yet allowing for) the unavoidable peaks above unity in the

magnitude response of S outside the performance bandwidth.

Reference Signal Weight: Since the control goal involves tracking dref , Wref := 1.

Noise Weight The stable, 3rd-order Wknoise was treated as the upper bound for the

noise present in y.
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Control Signal Weight: The control signal was required to have an upper bound

to prevent unreasonably large signals from being injected into the loudspeaker

model, with a higher penalty being assessed at low-frequencies. As a result, the

3rd-order, stable Wu was formulated such that the magnitude of W−1
u was the

upper limit of the amplitude of the control signal u when dref = 1. Moreover,

by limiting the control action at high frequencies, this weight further assisted

in high-frequency noise rejection and response shaping.

5.1.4 Control Design: D-K Iteration

The weights discussed above were substituted into the interconnection structure

displayed in Figure 4.5 and the open-loop interconnection shown in Figure 4.6 was

generated. Note that since the frequency response of Gnom had a magnitude peak

of 11.8, α := 1
11.8

= 0.085. The resulting P was a stable 4 × 4, 27th-order transfer

function and the robust performance perturbation structure was described by

∆ :=
{

diag (∆,∆p) : ∆ ∈ C1×1,∆p ∈ C2×2
}

. (5.7)

Implementing the D-K iteration scheme on the interconnection yielded a stable, 45th-

order controller K, satisfying the µ-objective after six iterations. Since the order of

K was relatively high, a balanced truncation (to 13th-order) was performed on K.

Furthermore, the controller’s zero at −2.23 × 10−3 rad/s was approximated with a

zero at the origin of the complex plane and a zero at −4.79× 106 rad/s was replaced

with a zero at ∞ and an appropriate gain. Figure 5.9 shows the upper bounds for µ

for both the µ-synthesized (=: K) and simplified (=: Ktrunc) controllers, with peaks

at 0.85 and 0.98, respectively. Figure 5.10 illustrates the resulting controller which

was implemented in the system displayed in Figure 4.1. Its frequency response is

shown in Figure 5.11.
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5.1.5 Results

Using Ktrunc as the controller, Figures 5.12 and 5.13 show the frequency responses

of the open-loop gain αGKtrunc and the closed-loop sensitivity function S, respec-

tively. The closed-loop frequency responses of the loudspeaker model’s linearization
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Figure 5.12: The Open-Loop Gain αGKtrunc for the Vented Loudspeaker Model

are shown in Figure 5.14 and Figure 5.15 for p and pf , respectively, along with the

responses for the uncontrolled case. By repeating the loudspeaker model’s simula-

tions, Figures 5.16 and 5.17 show the distortion in p and pf , respectively, at various

amplitudes and frequencies before control (=: THDAo) and after control (=: THDAc).

Furthermore, the figures show the plots of THDAcp (defined in (3.55)) for comparison.
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Figure 5.17: The Closed-Loop Distortion in pf for the Vented Loudspeaker Model
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The transient behavior of the loudspeaker was investigated using sine-wave inputs

at 20 Hz, as shown in Figure 5.18. These inputs started at t = 0.05 seconds and

stopped at t = 1.05 seconds, completing 20 cycles. The input to the uncontrolled

loudspeaker system was u and that of the controlled case was dref . The amplitudes

of the inputs were chosen so that the amplitude of the fundamental component in

p (in the steady state) for both the controlled and uncontrolled cases remained the

same (Υ = 7.5 Pa for the steady-state of p, for both cases). They were also chosen

so that the nonlinearities of the loudspeaker system were sufficiently excited. Figures

5.19 and 5.20 show the resulting transient responses of p and pf , respectively, for the

uncontrolled and controlled systems.
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Figure 5.18: The 20 Hz Inputs Used for the Transient Response Test of the Vented
Loudspeaker Model (u(t) for the Uncontrolled Case and and dref (t) for the Controlled
System)
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5.1.6 Discussion

Using a µ-designed controller to control the vented loudspeaker model in the low-

frequency region, the control objective of improving the model’s pressure response in

two locations was achieved. Figure 5.13 shows the closed-loop sensitivity function.

Note that its magnitude is less than unity from 16 Hz to 336 Hz, while reaching a

minimum of 0.37 at 79 Hz. The magnitude response of S, however, contained peaks of

1.17 at 8.7 Hz and 1.41 at 918 Hz, which were unavoidable (as explained in Chapter

4), yet not too large. In light of the findings of Chapter 3, measurable distortion

reduction was predicted for the range where the magnitude of S was small.

Harmonic distortion tests were performed to verify the reduction in nonlinear

distortion. Figure 5.16 shows large reductions for the harmonic distortion in p, for

the controlled case. Note that, even though the distortion reduction relationship

(3.55) holds true only for small distortion values, the upper-bound for the predicted

distortion with feedback control THDAcp nearly overlaps the closed-loop distortion

THDAc , even for large values. This shows that (3.55) is a good approximation for

this model. The distortion reduction was most significant when the loudspeaker was

driven at lower frequencies, where the ratio
THDAc
THDAo

reached a low of 0.38 (for the 20

Hz case). When driven at 100 Hz, the reduction was minimal
(

THDAc
THDAo

= 0.81
)

. This

comes as no surprise, since the controller was designed to increase the performance

at low frequencies. Also, Figure 5.17 shows similar reductions for the distortion in

pf , even though the signal pf was not part of the performance objective. As a matter

of fact, THDAcp shows reasonable agreement with THDAc . Therefore, reducing the

distortion in p also reduces the distortion in pf by a comparable amount, in this

example.

To analyze the transient behavior of the loudspeaker system, Figure 5.18 shows

special sine-wave inputs that were designed with amplitudes that significantly excited

the nonlinearities in the loudspeaker system. As Figures 5.19 and 5.20 illustrate, the

improvement in the transient response of the loudspeaker due to the control scheme
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is evinced by the quicker decay and smaller transient overshoots for both p and pf .

Moreover, no additional delays were added to the pressure responses due to the control

method.

5.2 Real Loudspeaker in a Vented Enclosure

Even though the example with the loudspeaker model clearly illustrated the va-

lidity of the control approach, it was of practical interest to test this method on an

actual loudspeaker.

Figure 5.21 shows a schematic of a typical loudspeaker in a vented enclosure (with

two cylindrical ducts, in this case) including two pressure measuring microphones.

Vented Enclosure

p)

pf

Amplifier
From

Microphone Bracket

Microphone

To Controller
Feedback Signal (

Figure 5.21: The Vented-Box Loudspeaker

Since the enclosure is assumed to be rigid, the acoustic radiation emanates en-

tirely from the cone and vents. One microphone mounted 0.028 meters (1.1 inch)

away from the cone (at rest) measures the pressure p for feedback use. The other

microphone located 1 meter away from the cone’s surface and 0.1 meters below the

cone’s centerline measures pf .
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5.2.1 Plant Identification

In order to analyze the full extent of the loudspeaker’s output, two types of ex-

periments were carried out: broadband, small amplitude sine-sweeps to measure the

nominal frequency response (linear), and fixed-frequency large amplitude, steady-

state sine-wave tests to measure the harmonic distortion (nonlinear). Note that since

the loudspeaker system is mildly nonlinear, rather than having to compute the lin-

earization of the loudspeaker, its linear response can be measured through small-signal

experiments. For consistency and convenience, the experiments were performed in an

anechoic chamber. Figure 5.22 shows the nominal frequency response measurements

for the vented-box loudspeaker system, from the voltage into the amplifier (=: u) to

the voltages from the microphones that measure p and pf . Also, Figure 5.23 shows

the measured distortion (=: THDAo) at various frequencies and amplitudes for both

p and pf . Root Mean Square (RMS) averaging and uniform windowing techniques

were used.

The plant consisted of a 15 inches in diameter, professional grade loudspeaker

fitted to a 6 ft3 enclosure having two ducts. The plant also included a voltage-drive

amplifier of similar quality, capable of producing 1000 Watts RMS of continuous

power. Two low-noise, high quality microphones, used to measure the pressures

produced by the loudspeaker system (p and pf), were also parts of the plant. The

microphone that measures p was used for feedback control, as well as for evaluating

the pressure response. On the other hand, the one that measures pf will only be used

to monitor the performance at its location. Therefore, only the frequency response

from u (the voltage into the amplifier) to p will be fit with an LTI system. The plant

data were obtained from vector-averaged, 512-point Fast-Fourier Transforms (FFT)

of the pressure signal measurements (uniform window) and a sine-sweep input using

a HP35660A Dynamic Signal Analyzer. The input signal amplitude was kept

small for the broadband tests so that the distortion was as low as possible.
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The SISO linear model fit Gnom (the transfer function from u to p) shown in

Figure 5.24 was obtained using a 14th-order, frequency-domain, weighted least-squares

algorithm. The plot shows a good fit in the region between 4 Hz and 1 kHz. Also,

the plant dynamics exhibited non-minimum phase zeros at 6.89±8.56j, 7254, 4585±
2233j, and 2242± 34025j rad/s.
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Figure 5.24: The Vented Loudspeaker System’s Nominal Model Fit Gnom

5.2.2 Control Design: Uncertainty and Performance Objec-

tive Weights

Once Gnom is found, a controller can be synthesized utilizing the techniques of

Chapter 4 and is implemented as shown in Figure 4.1.

Following the outline in Section 4.2.2, frequency-domain weights (Figure 5.25
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shows their frequency responses) applied to the interconnection shown in Figure 4.5

were carefully designed to properly reflect the control objectives. These weights are:

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Frequency [Hz]

M
ag

ni
tu

de

 W
ref

 W
err

 W
u

 W
∆

 W
knoise

Figure 5.25: The Vented Loudspeaker System’s Uncertainty and Performance Weights

Uncertainty Weight: W∆ was chosen to be a 5th-order, stable transfer function.

With its magnitude reaching a minimum of approximately 0.24 at 147 Hz, the

closed-loop system is required to be impervious to at least a 24% variation in
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G over all frequencies, up to 10000% at low frequencies, and up to 17000% at

high frequencies.

Performance Weight: The magnitude of Werr (4th-order, stable transfer function)

was chosen to be larger than unity in the region between 24 Hz and 218 Hz,

in order to penalize the magnitude of S such that it will be smaller than unity

in that region. In addition, the weight was designed with provisions for the

limitations set by the non-minimum phase zeros, while minimizing the unavoid-

able peaks above unity in the magnitude response of S that fall outside the

performance bandwidth.

Reference Signal Weight: Wref := 1.

Noise Weight The stable, 3rd-order Wknoise penalizes the noise present in y.

Control Signal Weight: The 3rd-order, stable Wu penalizes the control signal so

as to prevent potentially damaging signals from being introduced into the loud-

speaker, especially at low-frequencies. Moreover, the penalty is large at high

frequencies to assist in high-frequency noise rejection and response shaping.

Since the control objectives and plant dynamics are similar to that of the loudspeaker

model example, the weights from the vented loudspeaker model example (Figure 5.8)

closely resemble these weights, which comes as no surprise.

5.2.3 Control Design: D-K Iteration

Substituting the weights into the interconnection structure illustrated in Figure

4.5, the open-loop interconnection P shown in Figure 4.6 was generated. Note that the

frequency response ofGnom had a magnitude peak of 2, in this case. So, α := 1
2
= 0.50.

For this example, P is a stable 4 × 4, 29th-order transfer function with a robust

performance perturbation structure described by (5.7).
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Applying the D-K iteration algorithm to the interconnection produced a stable,

55th-order controller K, which satisfied the µ-objective with an upper-bound peak

of 0.84. Further balanced truncation and simplification yielded a 7th-order controller

Kimp , suitable for implementation, with an upper bound for µ peaking at 0.99. Figure

5.26 shows the upper bound for µ for the various controllers. The resulting controller
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Figure 5.26: The µ Upper-Bounds for Various Controllers of the Vented Loudspeaker
System

is shown in Figure 5.27 and was implemented in the system illustrated in Figure 4.1.

Kimp urefd

p

-

+
Σ

C

α

Figure 5.27: The Implemented Controller C for the Vented Loudspeaker System
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5.2.4 Control Design: Hardware Implementation

The controller C (shown in Figure 5.27) was implemented both as a digital and

an analog system. A Digital Signal Processor (DSP) board (manufactured by Spec-

trum) containing a Texas Instruments TMS320C30 floating point processor, 16

bit A/D and D/A converters, and 2nd-order, anti-aliasing filters (roll off at 20 kHz)

was used to test the design before a permanent analog filter was fabricated. Since

the DSP implemented discrete-time systems, the formulated controller was converted

into the discrete-time domain by means of a bilinear transformation at a sampling

time of 5 × 10−5 seconds, i.e., the transformation from the s-plane to the z-plane is

given by [42]

s =
2

T

1− z−1

1 + z−1
, (5.8)

where T is the sampling time. Because the sampling rate (:= 1
T
) was 200 times higher

than the upper operating frequency limit of the loudspeaker (100 Hz), the discretized

controller was treated as an approximation to the continuous-time controller, C. Since

the relatively high cost of high-performance DSP hardware would currently prohibit

the widespread use of this control system in loudspeakers, the DSP application was

used primarily for rapid prototyping of the designed controller. As a result, C was

finally implemented as an analog circuit.

5.2.5 Results

The control designs were implemented in hardware and the predicted loudspeaker

performance improvements were verified. In Figure 5.28, both the predicted and

measured responses of Kimp (the analog application controller) were plotted. Figure

5.29 shows both the measured and the model’s open-loop gains (=: αGKimp), whereas

Figure 5.30 plots the measured and the model’s sensitivity functions.
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In Figures 5.31 and 5.32, the measured small-signal responses of p and pf are

illustrated, respectively, for both the controlled and uncontrolled cases. In addition,

10
0

10
1

10
2

10
3

10
4

10
−5

10
−3

10
−1

10
1

M
ag

ni
tu

de

Frequency [Hz]

10
0

10
1

10
2

10
3

10
4

−1000

−500

0

500

P
ha

se
 [d

eg
re

es
]

Frequency [Hz]

d
ref

 to p

u to p         

Figure 5.31: The Small-Signal, Closed-Loop Pressure Response Measurements of p
for the Vented Loudspeaker System

Figure 5.33 shows the measured harmonic distortions for the system with (=: THDAc)

and without (=: THDAo) control. The figure also shows the distortion reduction

predictions THDAcp .
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5.2.6 Discussion

A good quality microphone and an analog controller emulating a µ-design to

control a loudspeaker in a vented enclosure were used to improve the loudspeaker’s

low-frequency pressure response. Figure 5.28 shows that the measured response of

Kimp agreed well with the model in a wide range of frequencies. The same was true

for Figure 5.30, in which the measured and predicted sensitivities show the desired

shapes. Therefore, the results of the implementation agreed well with the simulations

and the objectives for the µ-design were achieved in the implemented system. The

sensitivity function’s magnitude was less than unity from 15 Hz to 285 Hz and reached

a minimum of 0.40 at 86 Hz, thus allowing a significant distortion reduction for the

closed-loop system in that range. On the other hand, the magnitude response of

S had peaks of 1.4 at 9 Hz and 1.65 at 792 Hz, due to the non-minimum phase

nature of the plant dynamics. Although unavoidable, the peaks above unity were not

unreasonably large.

Harmonic distortion tests were conducted to assess the reduction in nonlinear dis-

tortion. Figure 5.33 shows significant reductions in the harmonic distortion in p for

the controlled case when the loudspeaker was driven with large signals, even though

the uncontrolled loudspeaker already exhibited good linearity at high levels. As il-

lustrated, these reductions were most significant when the loudspeaker was driven

at lower frequencies
(

THDAc
THDAo

= 0.42 at 20 Hz
)

. No distortion reduction was achieved

beyond 100 Hz. This was expected as the controller was designed to reduce the

distortion at low frequencies. Also, the distortion reduction relationship (3.55) pro-

vided a good approximation for the closed-loop distortion in p via the upper bound

THDAcp . In addition, the figure shows similar reductions for the distortion in pf (only

when driven below 60 Hz), even though the signal pf was not part of the performance

objective. Note that THDAcp shows reasonable agreement with THDAc at those fre-

quencies. Therefore, reducing the distortion at p will reduce the distortion at pf in a

comparable manner, when the system is driven below 60 Hz. On the other hand, the
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distortion at 60 Hz and 100 Hz were worsened in the controlled case. Even though

this may seem undesirable, the distortion levels were already very low at these fre-

quencies (without control), and were only slightly higher when the loudspeaker was

controlled. Thus the degradation is not audibly significant.

5.3 Real Loudspeaker in a Sealed Enclosure

To further illustrate the usefulness of the control method to a variety of loud-

speaker types, Figure 5.34 shows a diagram of a loudspeaker in a sealed enclosure

along with an external feedback sensor (microphone). Since the enclosure is sealed,

p)From
Amplifier

Microphone Bracket
Microphone

Sealed Enclosure

To Controller
Feedback Signal (

Figure 5.34: The Closed-Box Loudspeaker

it is assumed that the acoustic radiation emanates entirely from the moving cone. A

microphone mounted 0.032 meters (1.25 inches) away from the cone’s surface (at rest)

measures the pressure p for feedback use. Unlike the vented case (where the feedback

microphone is close to the cone, but far from the vent), the feedback microphone is

nearest to the only source of acoustic radiation.

5.3.1 Plant Identification

To thoroughly study the loudspeaker’s output, broadband, small amplitude sine-

sweep experiments to measure the nominal frequency response (linear) and fixed-

frequency large amplitude, steady-state sine-wave tests to measure the harmonic dis-
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tortion (nonlinear) have been carried out. The experiments were performed in a 38 ft

long, 19 ft wide, and 15 ft high laboratory with concrete walls, carpeted floor, and a

ceiling covered with acoustical tile. Figure 5.35 shows the nominal frequency response

measurements for the closed-box loudspeaker system, from the voltage into the am-

plifier (=: u) to the voltage from the microphone. In addition, Figure 5.36 shows the

measured distortion (=: THDAo) for p at various frequencies and amplitudes. RMS

averaging and uniform windowing methods were used.
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Figure 5.35: The Measured, Small-Signal Frequency Response of p for the Sealed
Loudspeaker System

The plant included an 18 inch in diameter, professional grade loudspeaker (AURA

1808). Although a ported enclosure with 8 ft3 of interior volume was recommended by

the manufacturer for optimum performance, the transducer was mounted in a custom-

made enclosure in a sealed configuration with 4 ft3 of volume. This setup purposely

limited the low-frequency response potential of the loudspeaker. The resulting system
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Figure 5.36: The Measured Distortion for the Sealed Loudspeaker System

was more compact, rigid, and lightweight, critical factors in some applications (e.g.

automobiles). The plant also included a high-quality, voltage-drive amplifier, with

the ability to produce 700 Watts RMS of continuous power (QSC MX1000a). A

low-noise, high quality electret condenser microphone, used to measure the pressure

produced by the loudspeaker, was also part of the plant (LinearX M51). This

microphone’s pressure signal was used for feedback control, as well as for evaluation.

The plant data were computed from a vector-averaged, 512-point FFT of the pressure

signal measurement (uniform window) and a sine-sweep input using the HP35660A

Dynamic Signal Analyzer. As with the vented case, the input signal amplitude

was kept small for the broadband test so that the distortion was as low as possible.

The 7th-order, SISO LTI model Gnom (shown in Figure 5.37) was fit using a frequency-

domain, weighted least-squares algorithm. As the plot illustrates, the model fit agreed

with the data in the region between 29 Hz and 300 Hz. Furthermore, the plant

dynamics have non-minimum phase zeros at 63± 46.4j and 5723 rad/s.
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Figure 5.37: The Sealed Loudspeaker System’s Nominal Model Fit, Gnom
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5.3.2 Control Design: Uncertainty and Performance Objec-

tive Weights

Since the nominal plant is now represented by a linear system Gnom , a controller

can be designed using the methods of Chapter 4, which can be implemented as shown

in Figure 4.1.

Section 4.2.2 shows the frequency-domain weights utilized in the interconnection

illustrated in Figure 4.5. In this case, the weights in Figure 4.7 were used.

5.3.3 Control Design: D-K Iteration

With the weights substituted into the interconnection structure (Figure 4.5), the

open-loop interconnection (Figure 4.6) was computed. Note that since the frequency

response of Gnom had a magnitude peak of 1.7, α := 1
1.7

= 0.59, in this case. The

4 × 4, stable, transfer function P was 21st-order, for this example, and the robust

performance perturbation structure was given by (5.7).

The D-K iteration algorithm was implemented on the interconnection. This re-

sulted in a stable, 45th-order controller K, which satisfied the µ-objective after five

iterations (the upper bound for µ achieved a peak of 0.89). Since the order of K

was relatively high, a balanced truncation (to 9th-order) was performed on it. Fur-

ther simplification of the truncated controller was performed to make it suitable for

analog circuit implementation (by manually manipulating some of the locations of its

poles and zeros). Figure 5.38 shows the upper bounds for µ for both the simplified (=:

Kanalog) and µ-synthesized controllers, where a peak of 0.99 was achieved whenKanalog

was used. Figure 5.39 illustrates the finalized controller which was implemented in

the system shown in Figure 4.1.
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5.3.4 Control Design: Hardware Implementation

Using the same DSP mentioned for the vented loudspeaker example, the controller

C (shown in Figure 5.39) was implemented as a discrete-time system. It was converted

into the discrete-time domain via a bilinear transformation with a sampling time of

5× 10−5 seconds, using (5.8). Since the sampling rate was 200 times higher than the

upper operating frequency limit of the loudspeaker (100 Hz), the discretized controller

was a valid approximation to C. As in the vented loudspeaker case, the DSP was used

only for rapid prototyping of the designed controller. The controller C was finally

implemented using a high-quality analog circuit.

5.3.5 Results

Implementing the control designs in hardware, the predicted performance improve-

ments for the loudspeaker in a sealed enclosure were verified. Both the predicted and

measured responses of Kanalog are plotted in Figure 5.40. Also, the measured and the

model’s open-loop gains (=: αGKanalog) and sensitivity functions are shown in Figures

5.41 and 5.42, respectively. In addition, the small-signal response measurements of p

for both the controlled and uncontrolled systems are plotted in Figure 5.43. The mea-

sured harmonic distortions for the system with (=: THDAc) and without (=: THDAo)

the controller are shown in Figure 5.44.
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5.3.6 Discussion

An improvement in the low-frequency pressure response of a loudspeaker in a

sealed enclosure was achieved through the use of a high quality analog controller and

a microphone implementing a µ-design. Figure 5.40 shows that the measured and

predicted responses of Kanalog agreed well in the frequency range between 10 Hz and

820 Hz. Also, Figure 5.42 shows that the measured and predicted sensitivities were in

agreement between 29 and 300 Hz. Therefore, the implementation results agreed well

with the simulations and the implemented system achieved the µ-design objectives.

The magnitude of S was smaller than unity from 26 Hz to 312 Hz and reached a

minimum of 0.51 at 70 Hz. Therefore, the closed loop system offered significant

distortion reduction in this range (from (3.55)). On the other hand, the magnitude

response of S contained the unavoidable (yet not too large) peaks of 1.78 at 17 Hz and

1.45 at 596 Hz (since the plant was non-minimum phase). Furthermore, the pressure

response measurements for the controlled case (dref to p) showed marked improvement

in the flatness of the magnitude and phase, as illustrated in Figure 5.43. This was

desirable, since the response of p captured the pressure output near the cone, which

was the only source of acoustic radiation.

To quantify the reduction in nonlinear distortion, harmonic distortion tests were

conducted. As shown in Figure 5.44, measurable reductions in the harmonic distortion

for the controlled case were observed when the loudspeaker was driven with large

amplitude sinusoids. The improvement was most noticeable when the loudspeaker was

driven at lower frequencies, where the ratio
THDAc
THDAo

achieved a low of 0.55 (for the 20 Hz

case). Small reductions in distortion were observed when the loudspeaker was driven

at 100 Hz
(

THDAc
THDAo

= 0.88
)

. This was expected, since the controller was designed

to improve the loudspeaker’s low-frequency response. In addition, THDAcp agreed

well with THDAc across all tested frequencies. This further proves the usefulness of

THDAcp as a predictor of the distortion for the closed-loop system when a mildly

nonlinear system is controlled using a linear feedback controller.
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Chapter 6

Conclusion

This dissertation documented a comprehensive study of loudspeaker modeling and

control. A lumped-parameter model for a voice-coil loudspeaker in a vented enclosure

was presented that derived from a consideration of physical principles. Furthermore,

a low-frequency (20 Hz to 100 Hz), feedback control method designed to improve the

nonlinear performance of the loudspeaker and a suitable performance measure for

use in design and evaluation were proposed. Data from experiments performed on

a variety of actual loudspeakers confirmed the usefulness of the theory developed in

this work.

In Chapter 2, a lumped-parameter loudspeaker model was analyzed. Even though

the model was simple, much of the loudspeaker’s nonlinear behavior was accurately

captured. The model formulation allowed a relatively easy application of modern

control system techniques. The model also lent itself well to modern parametric iden-

tification methods. One attractive feature of the model was its special structure,

each element of which was individually studied. The modular approach to model

construction allowed further refinement in each element while still keeping the over-

all structure simple (e.g. adding dynamics to the enclosure). It should be noted

that effects such as mechanical suspension hysteresis, nonlinear mechanical damp-

ing, asymmetrical magnetic fields, and non-symmetric mechanical stiffness were not
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included. Their influences on the response of a properly designed loudspeaker are

secondary in comparison to the nonlinearities that were considered, which may add

considerable complexity to the loudspeaker model. However, these effects are cur-

rently being researched and evaluated, in order to refine the model to a level beyond

what was achieved.

To properly ascertain the nonlinear performance of the loudspeaker system, a suit-

able nonlinear distortion measure (THDA) was proposed in Chapter 3 and compared

with other distortion measures currently used in practice. Also, the linearizing effect

of feedback using a linear controller (both static and dynamic) on some nonlinear sys-

tems was analyzed. The results showed that the distortion reduction was potentially

significant and a useful upper bound (based on the sensitivity function S) on the

closed-loop distortion was found (see (3.55)). Examples were given that verified the

findings. In addition, the theory allowed for the proper design of a linear controller to

improve the nonlinear performance (by reducing THDA) of mildly nonlinear systems.

Chapter 4 outlined a feedback scheme based on robust control theory, which was

applied to the loudspeaker system. Using the pressure output of the loudspeaker

system for feedback, the technique offered significant advantages over those previously

attempted. One advantage was the simplicity of implementation. Specifically, a

pressure transducer and a simple linear filter were all that was necessary for realizing

the control method. Also, the controlled loudspeaker system had guaranteed specified

performance even in the face of uncertainties in the loudspeaker system’s dynamics.

It also offered ample disturbance rejection and reduced sensitivity to sensor noise.

Since this method is non-invasive to the loudspeaker, it can be used as a retrofit to

existing loudspeaker systems without adverse effects. In addition, the issue of non-

minimum phase dynamics of the uncontrolled system was addressed when designing

the controller. Care was taken so that the fundamental limits on the performance of

non-minimum phase systems were not exceeded.

Examples that prove the utility of the theory developed in this dissertation on
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a variety of loudspeaker systems were presented in Chapter 5. The first example

involved the low-frequency control of the loudspeaker model constructed in Chap-

ter 2, using a µ-designed controller. Even though the feedback signal only included

the pressure near the loudspeaker’s cone, the closed-loop system also showed pre-

dictable improvement in the pressure response at a location approximately 1 meter

away. Figures 5.16 and 5.17 show large reductions in the harmonic distortion for

both pressure locations. The plots revealed that the ratio
THDAc
THDAo

reached a minimum

of 0.38 at low-frequencies. The upper bound on the predicted closed-loop distortion

also showed good agreement throughout a large range of amplitudes. The reduc-

tions in distortion were minimal when the loudspeaker was driven at high frequencies
(

THDAc
THDAo

= 0.81 for 100 Hz
)

. This was not surprising, since the controller was de-

signed to increase the performance at low frequencies. The transient behavior of the

loudspeaker system was also studied, by using specific sinusoidal inputs with a fre-

quency of 20 Hz and amplitudes that significantly excited the nonlinearities, as shown

in Figure 5.18. The transient response of the loudspeaker was improved due to the

control scheme, as illustrated in Figures 5.19 and 5.20. This was done without the

introduction of extra delays in the pressure responses.

The second example examined an actual loudspeaker enclosed in a vented con-

figuration. A µ-based analog controller was used in conjunction with a good quality

microphone (which measured the pressure near the loudspeaker’s cone) to control the

low-frequency response of the loudspeaker with good results. As shown in Figure 5.33,

measurable reductions in harmonic distortion were recorded for the controlled case.

By design, the ratio
THDAc
THDAo

became smaller when the loudspeaker was driven at low

frequencies
(

THDAc
THDAo

= 0.42 for 20 Hz
)

, with virtually no distortion reduction beyond

100 Hz. The bound on the predicted closed-loop distortion provided a good approx-

imation to that of the closed-loop system, for the pressure measured near the cone.

For frequencies below 60 Hz, Figure 5.33 shows similar improvements (that were ac-

curately predicted) in performance for the measured pressure response approximately
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1 meter away from the loudspeaker, even though that pressure signal was not part of

the performance objective. The controlled system’s performance, however, worsened

at 60 Hz and 100 Hz. Happily, the distortion levels were already very low at these

frequencies for the uncontrolled loudspeaker and were only slightly higher for the

controlled case. The performance degradation, therefore, posed no concern.

Finally, the last example successfully implemented an analog controller (emulating

a µ-design) and a microphone, which measured the pressure near the cone of a loud-

speaker in a sealed enclosure, to control the pressure response in the low-frequency

region. From Figure 5.43, the measured pressure response for the controlled case

exhibited significant improvement in the flatness of the magnitude and phase. Fur-

thermore, Figure 5.44 displays measurable reductions in harmonic distortion for the

controlled case. As with the previous examples, the improvement was most significant

when the loudspeaker was driven at lower frequencies, where the ratio
THDAc
THDAo

reached

a minimum of 0.55 for the 20 Hz case and increased to 0.88 for 100 Hz. The predicted

closed-loop distortion demonstrated even better agreement with the measurements

than that of the second example. This was true across all tested frequencies.

As can be seen from the forgoing, the methods outlined in this work can produce

predictable and measurable improvements in the nonlinear performance of a low-

frequency, voice-coil loudspeaker (attached to either vented or sealed enclosures).

The successful implementations have motivated further work in the areas of improving

the loudspeaker model, finding other suitable measures of distortion, and exploring

alternative control techniques.
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Appendix A

Solving the Equations for the

Acoustic Half-Space

From Section 2.2, the solution that satisfies (2.12), (2.13), and (2.14) was given

as (2.17). To show this, some properties of (2.18), which is radially symmetric are

listed. Then, a general version of (2.17) is shown to solve the Helmholtz equation

(2.12). Finally, the proposed solution is proven to satisfy the boundary condition

(2.14).

A.1 Some Properties of Radially Symmetric Func-

tions

Let ϕ : R→ R and φ : Rn → R be defined such that

φ(γ) := ϕ (‖γ‖) . (A.1)

Define ϕ′ (‖γ‖) := dϕ(‖γ‖)
d(‖γ‖)

, ϕ′′ (‖γ‖) := d2ϕ(‖γ‖)

d(‖γ‖)2
, and let γi be the ith element of the

vector γ. Then,
(

~∇φ
)

i
= ϕ′ (‖γ‖) γi

‖γ‖ , γ 6= 0n, (A.2)
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~∇φ =
ϕ′ (‖γ‖)
‖γ‖ γ, (A.3)

‖~∇φ‖ = |ϕ′ (‖γ‖)| , (A.4)

~∇φ · γ

‖γ‖ = ϕ′ (‖γ‖) , γ 6= 0n, (A.5)

∫

B(0,R)

φ(γ)dγ =

∫ R

0

∫

∂B(0,r)

φ(S, r) dS dr

=

∫ R

0

∫

∂B(0,r)

ϕ(r) dS dr

=

∫ R

0

ϕ(r)nα(n)rn−1 dr, (A.6)

where α(n) is the volume of the unit ball in Rn. So, α(n)rn is the volume of the ball

of radius r and nα(n)rn−1 is its surface area. For n = 3, nα(n) = 4π.

Note that
∫ R

0

1

rk
dr =







1
1−k

R1−k if k < 1

diverges if k ≥ 1.
(A.7)

Therefore, φ ∈ L1,loc if ϕ(r) =
1
rk for k < n; φ /∈ L1,loc if ϕ(r) =

1
rk for k ≥ n.

Furthermore,
∫

∂B(0,R)

~∇φ · γ

‖γ‖ dS = nα(n)Rn−1ϕ′(R), (A.8)

∆φ = ϕ′′ (‖γ‖) + n− 1

‖γ‖ ϕ
′ (‖γ‖) , γ 6= 0n, (A.9)

∫

∂B(0,R)

φ dS = ϕ(R)nα(n)Rn−1. (A.10)

A.2 Solving the Helmholtz Equation

The properties for radially symmetric functions are used to show what follows.

Consider a specific ϕ, namely

ϕ =
q

r
eβr, (A.11)
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where q and β are constants (possibly complex, β 6= 0). Then,

ϕ′(r) = − q

r2
eβr +

βq

r
eβr

=
q

r

(

−1

r
+ β

)

eβr, (A.12)

ϕ′′(r) =
2q

r3
eβr − βq

r2
eβr − βq

r2
eβr +

β2q

r
eβr

=

(

2q

r3
− 2βq

r2
+
β2q

r

)

eβr. (A.13)

For n = 3,

ϕ′′ +
n− 1

r
ϕ′ =

(

2q

r3
− 2βq

r2
+
β2q

r

)

eβr +
2

r

(

− q

r2
+
βq

r

)

eβr

=
β2q

r
eβr

= β2ϕ(r). (A.14)

So, for n = 3, φ(γ) := q
‖γ‖

eβ‖γ‖ and

∆φ = β2φ, (A.15)

which is valid on R3/03 for any q and β 6= 0. Note: For n ≥ 2, (A.1) is locally

integrable. Hence, φ defines a distribution. Therefore, the case of n = 3 will be

emphasized. From (A.8) and (A.12)
∫

∂B(0,R)

~∇φ · γ

‖γ‖ dS = 3α(3)R2 q

R

(−1
R

+ β

)

eβR

= 3α(3)q (−1 + βR) eβR. (A.16)

Hence,

lim
R→0

∫

∂B(0,R)

~∇φ · γ

‖γ‖ dS = −3α(3)q, β ∈ C. (A.17)

Also, from (A.10)
∫

∂B(0,R)

φ dS = 3ϕ(R)α(3)R2

= 3α(3)qReβR, (A.18)
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which gives

lim
R→0

∫

∂B(0,R)

φ dS = 0. (A.19)

Lemma A.1 As a distribution,

∆φ− β2φ = −3qα(3)δ, (A.20)

where δ is the Dirac-delta distribution.

Proof: Let v ∈ C∞c (R3). Then, by definition,

(

∆φ− β2φ
)

(v) :=

∫

R3

(

φ∆v − β2φv
)

dγ (A.21)

Taking ε > 0,

(

∆φ− β2φ
)

(v) =

∫

B(0,ε)

(

φ∆v − β2φv
)

dγ +

∫

R3/B(0,ε)

(

φ∆v − β2φv
)

dγ

=

∫

B(0,ε)

(

φ∆v − β2φv
)

dγ +

∫

R3/B(0,ε)
φ∆v dγ − β2

∫

R3/B(0,ε)
φv dγ

=

∫

B(0,ε)

(

φ∆v − β2φv
)

dγ +

∫

R3/B(0,ε)
∆φv dγ

+

∫

∂B(0,ε)

φ~∇v · −γ‖γ‖ dS −
∫

∂B(0,ε)

v~∇φ · −γ‖γ‖ dS

−β2

∫

R3/B(0,ε)
φv dγ

=

∫

B(0,ε)

(

φ∆v − β2φv
)

dγ +

∫

R3/B(0,ε)

(

∆φ− β2φ
)

v dγ

−
∫

∂B(0,ε)

φ~∇v · γ

‖γ‖ dS +

∫

∂B(0,ε)

v~∇φ · γ

‖γ‖ dS, (A.22)

where the second to last step was obtained using
∫

Ω

(φ∆v − v∆φ) dγ =

∫

∂Ω

φ~∇v · ~n dS −
∫

∂Ω

v~∇φ · ~n dS, (A.23)

where ~n is the outward (from Ω) unit normal vector of ∂Ω and v ∈ C∞c . This is

referred to as Green’s Identity [50].

Note that since φ ∈ L1,loc and v ∈ C∞c , it is observed from the final expression in

(A.22) that
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• The 1st integral vanishes as ε→ 0.

• The 2nd integral ≡ 0, since ∆φ− β2φ ≡ 0 for γ 6= 03 (from (A.15)).

• Using (A.19), the 3rd integral vanishes as ε→ 0.

• Using (A.17) and by continuity of v, the 4th integral tends to −3v(0)α(3)q.

Hence,
(

∆φ− β2φ
)

(v) = −3qα(3)v(0). (A.24)

¥

Lemma A.2 Consider

∂φ

∂γ3
= ϕ′(‖γ‖) γ3‖γ‖

= γ3
q

r2

(−1
r

+ β

)

eβr. (A.25)

Fix γ3 = z > 0, and view (A.25) as a function of the two remaining variables, i.e.

Ψz(x, y) :=
zq

x2 + y2 + z2

(

−1
√

x2 + y2 + z2
+ β

)

eβ
√
x2+y2+z2 , (A.26)

where r :=
√

x2 + y2 + z2. Let β := jσ, σ ∈ R and take v ∈ Cc (R2) ∩ L∞. Then,

lim
z→0
z>0

∫

R2
Ψz(γ)v(γ) dγ = −2πqv(0). (A.27)

Proof: Note that Ψz(x, y) is radially symmetric on R2. Define τz : R→ C as

τz(R) :=
zq

R2 + z2

( −1√
R2 + z2

+ β

)

eβ
√
R2+z2 , (A.28)

where R :=
√

x2 + y2. So, for any R 6= 0, limz→0 τz(R) = 0.
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Integrating over the annulus Ri ≤
√

x2 + y2 ≤ Ro,

∫

Ri≤
√
x2+y2≤Ro

Ψ(x, y) dx dy =

∫ Ro

Ri

∫ 2π

0

τz(r, θ)r dθ dr

=

∫ Ro

Ri

2πzq

r2 + z2

( −1√
r2 + z2

+ β

)

eβ
√
r2+z2 r dr

= 2πq

∫ Ro

Ri

zr

r2 + z2

( −1√
r2 + z2

+ β

)

eβ
√
r2+z2 dr

= 2πqz

[

eβ
√
R2o+z

2

√

R2
o + z2

− eβ
√
R2i+z

2

√

R2
i + z2

]

. (A.29)

If <(β) ≤ 0 and since z > 0,

∫

R2
Ψz(γ) dγ = lim

Ri→0
Ro→∞

2π

∫ Ro

Ri

τz(r)r dr

= 2πqz lim
Ro→∞

[

eβ
√
R2o+z

2

√

R2
o + z2

− eβz

z

]

= −2πqeβz. (A.30)

Fix z > 0 and take

K(z) :=

∣

∣

∣

∣

∫

R2
Ψz(γ) [v(γ)− v(0)] dγ

∣

∣

∣

∣

. (A.31)

Let ε > 0 and choose δ > 0 so that |v(γ)− v(0)| ≤ ε for |γ| ≤ δ. Then,

K(z) =

∣

∣

∣

∣

∫

B(0,δ)

Ψz(γ) [v(γ)− v(0)] dγ +

∫

R2/B(0,δ)
Ψz(γ) [v(γ)− v(0)] dγ

∣

∣

∣

∣

≤
∫

B(0,δ)

|Ψz(γ)| |v(γ)− v(0)| dγ +

∫

R2/B(0,δ)
|Ψz(γ)| |v(γ)− v(0)| dγ

≤ ε

∫

B(0,δ)

|Ψz(γ)| dγ + 2 ‖v‖∞
∫

R2/B(0,δ)
|Ψz(γ)| dγ

= 2π

{

ε

∫ δ

0

|τz(r)| r dr + 2 ‖v‖∞
∫ R̄

δ

|τz(r)| r dr
}

, (A.32)

for some finite R̄. Note that in the step before last, the fact that v ∈ Cc (R2) (hence

bounded) was exploited.
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Let

L (Ri, Ro, z) :=

∫ Ro

Ri

|τz(r)| r dr

=

∫ Ro

Ri

∣

∣

∣

∣

zq

r2 + z2

( −1√
r2 + z2

+ β

)

eβ
√
r2+z2

∣

∣

∣

∣

r dr

= |q|
∫ Ro

Ri

∣

∣

∣

∣

∣

−z
(r2 + z2)3/2

+ j
zσ

r2 + z2

∣

∣

∣

∣

∣

r dr

≤ |q|
[

∫ Ro

Ri

∣

∣

∣

∣

∣

z

(r2 + z2)3/2

∣

∣

∣

∣

∣

r dr + σ

∫ Ro

Ri

∣

∣

∣

∣

z

r2 + z2

∣

∣

∣

∣

r dr

]

= |q|
[

∫ Ro

Ri

z

(r2 + z2)3/2
r dr + σ

∫ Ro

Ri

z

r2 + z2
r dr

]

= |q| [I1(Ri, Ro, z) + I2(Ri, Ro, z)] , (A.33)

where

I1 (Ri, Ro, z) :=

∫ Ro

Ri

z

(r2 + z2)3/2
r dr, (A.34)

I2 (Ri, Ro, z) := σ

∫ Ro

Ri

z

r2 + z2
r dr. (A.35)

Integrating (A.34) yields

I1 (Ri, Ro, z) =

∫ Ro

Ri

z

(r2 + z2)3/2
r dr

= −z
[

1
√

R2
o + z2

− 1
√

R2
i + z2

]

. (A.36)

Similarly with (A.35),

I2 (Ri, Ro, z) = σ

∫ Ro

Ri

z

r2 + z2
r dr

=
σz

2

[

ln
(

R2
o + z2

)

− ln
(

R2
i + z2

)]

=
σz

2
ln

(

R2
o + z2

R2
i + z2

)

. (A.37)

Substituting (A.36) and (A.37) into (A.33),

L (Ri, Ro, z) ≤ |q|z
[

1
√

R2
i + z2

− 1
√

R2
o + z2

+
σ

2
ln

(

R2
o + z2

R2
i + z2

)

]

. (A.38)
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Note that

lim
Ri→0

I1 (Ri, Ro, z) =
−z

√

R2
o + z2

+ 1 = I1 (0, Ro, z) , (A.39)

lim
z→0

I1 (0, Ro, z) = 1. (A.40)

Similarly,

lim
Ri→0

I2 (Ri, Ro, z) =
σz

2
ln

(

R2
o + z2

z2

)

= I2 (0, Ro, z) , (A.41)

lim
z→0

I2 (0, Ro, z) = lim
z→0

σz

2
ln

(

R2
o + z2

z2

)

=
σ

2
lim
z→0





ln
(

R2o+z
2

z2

)

1
z



 =
σ

2
lim
z→0





z2

R2o+z
2

(−2R2o)
z3

−1
z2





= σR2
o lim
z→0

z

R2
o + z2

= 0, (A.42)

where the step before last utilized l’Hospital’s Rule [50].

Note that substituting (A.39) and (A.41) into (A.38) yields

L(0, Ro, z) ≤ |q|
[

−z
√

R2
o + z2

+ 1 +
σz

2
ln

(

R2
o + z2

z2

)

]

. (A.43)

Using (A.40) and (A.42) in (A.38) produces

lim
z→0

L(0, δ, z) ≤ |q|, (A.44)

lim
z→0

L(δ, R̄, z) ≤ 0. (A.45)

Combining (A.32), (A.38), and (A.43) gives

K(z) ≤ 2πε|q|
{

1− z√
δ2 + z2

+
σz

2
ln

(

δ2 + z2

z2

)

+

2z ‖v‖∞

[

1√
δ2 + z2

− 1
√

R̄2 + z2
+
σ

2
ln

(

R̄2 + z2

δ2 + z2

)

]}

.(A.46)

Using (A.44), (A.45), and the fact that

K(z) ≤ 2π
{

εL(0, δ, z) + 2 ‖v‖∞ L(δ, R̄, z)
}

(A.47)
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yields

lim
z→0

K(z) ≤ 2πε|q|, (A.48)

which holds for any ε > 0. Therefore,

lim
z→0

K(z) ≤ 0. (A.49)

However, K(z) ≥ 0, by definition. Then,

lim
z→0

K(z) = 0. (A.50)

Hence, using (A.30)

lim
z→0
z>0

∫

R2
Ψz(γ)v(γ) dγ = lim

z→0
z>0

∫

R2
Ψz(γ)v(0) dγ

= v(0) lim
z→0
z>0

∫

R2
Ψz(γ) dγ

= −2πqv(0). (A.51)

¥

Therefore, by letting β := −j ω
c
, q := jωρ0

2π
, and v(γ) := l(x, y), it is now clear that

(2.17) solves the half-space equations (2.12), (2.13), and (2.14).
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Appendix B

Converting Implicit State-Space

Equations to Explicit Formulations

Consider the LTI system with implicit equations




η̇

0q



 =





Â B̂

Ĉ D̂









η

v



 , (B.1)

where Â ∈ Rn×n, B̂ ∈ Rn×m, Ĉ ∈ Rq×n, D̂ ∈ Rq×m, η̇ ∈ Rn, η ∈ Rn, and v ∈ Rm.

Define v :=

[

u

y

]

, where u ∈ Rm−q and y ∈ Rq. Then, B̂ :=
[

B̂1 B̂2

]

and D̂ :=
[

D̂1 D̂2

]

are appropriately partitioned. Therefore, the implicit equations are written

as

η̇ = Âη + B̂1u+ B̂2y (B.2)

0q = Ĉη + D̂1u+ D̂2y. (B.3)

Consider the explicit formulation where u is the input and y is the output so that

η̇ = Aη +Bu (B.4)

y = Cη +Du. (B.5)

If D̂2 is invertible, then (B.3) can written to resemble (B.5) as

y = −D̂−1
2 Ĉη − D̂−1

2 D̂1u. (B.6)
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Substituting (B.6) into (B.2) and making (B.2) resemble (B.4) gives

η̇ = Âη + B̂1u+ B̂2(−D̂−1
2 Ĉη − D̂−1

2 D̂1u) (B.7)

= (Â− B̂2D̂
−1
2 Ĉ)η + (B̂1 − B̂2D̂

−1
2 D̂1)u. (B.8)

Comparing (B.4) with (B.8) and (B.5) with (B.6) yields

A = Â− B̂2D̂
−1
2 Ĉ, (B.9)

B = B̂1 − B̂2D̂
−1
2 D̂1, (B.10)

C = −D̂−1
2 Ĉ, (B.11)

D = −D̂−1
2 D̂1. (B.12)
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Appendix C

State-Space Extraction of a

Blocking Zero

Lemma C.1 Consider the single-input, multi output, LTI system given by





ẋ

y



 =





A B

C D









x

u



 , (C.1)

where A ∈ Rn×n, B ∈ Rn, C ∈ Rny×n, and D ∈ Rny . Suppose A is invertible (i.e.

has no eigenvalues at 0) and

−CA−1B +D = 0ny
, (C.2)

i.e. the system has at least one blocking zero at s = 0. Then, there exists E ∈ Rny×n

such that the system




η̇

y



 =





A B

E 0ny









η

u̇



 (C.3)

relates the same input-output pair (u, y) as (C.1).

Proof: From (C.2),




A B

C D









−A−1B
1



 = 0n+ny
. (C.4)
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Hence,

rank





A B

C D



 ≤ n. (C.5)

By virtue of it dimension,

[

A B

C D

]

has a left null space of dimension at least ny − 1.

Actually, it has a left null space of dimension at least ny, since it is rank deficient.

Consider the matrices V1 ∈ Rny×n and V2 ∈ Rny×ny such that [V1 V2] has full row

rank and

[

V1 V2

]





A B

C D



 = 0ny×(n+1). (C.6)

Then,

V1

[

A B
]

+ V2

[

C D
]

= 0ny×(n+1). (C.7)

Note that V2 is invertible. If not, there exists a nonzero vector w ∈ Rny such that

wTV2 = 01×ny
. (C.8)

Then, left-multiplying (C.7) by wT gives

wTV1

[

A B
]

= 01×(n+1). (C.9)

Since [V1 V2] has full row rank,

wTV1 6= 01×n. (C.10)

However, A has no eigenvalues at 0. Therefore, (C.9) is a contradiction. Hence, V2 is

invertible.

Then, (C.7) can be written as

−V −12 V1

[

A B
]

=
[

C D
]

. (C.11)

Let E := −V −12 V1 and η := ẋ. Using (C.11),

y =
[

C D
]





x

u



 = E
[

A B
]





x

u



 = Eẋ = Eη. (C.12)
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Differentiating the state equation in (C.1) yields

η̇ = Aη +Bu̇. (C.13)

Finally,




η̇

y



 =





A B

E 0ny









η

u̇



 . (C.14)

¥
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Appendix D

Transfer Functions for the Vented

Loudspeaker Model Example

D.1 The Acoustic Half-Space

From Chapter 5, let H1 and H̃2 be written as

H1 :=





AH1 BH1

CH1 DH1



 , H̃2 :=





AH̃2
BH̃2

CH̃2
DH̃2



 . (D.1)

The entries of the matrices are given by tables on the following pages. Note that

AH1 = AH̃2
=: AH and has the form AH := diag (AH1 , AH2 , . . . , AH27), i.e. it is block-

diagonal with entries AHi
given in Tables D.1 and D.2 (see Chapters 2 and 5 and

Appendix C). Tables D.3 and D.4 give BH1 and BH̃2
, respectively. Also, CH1 is given

in Tables D.5 and D.6, while CH̃2
is found in Tables D.7 and D.8. Table D.9 shows

the elements of both DH1 and DH̃2
.
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Table D.1: The Elements of AH := diag (AH1 , AH2 , . . . , AH27) (Elements 1 to 19)

i AHi

1 −3.623× 10+03

2 −4.236× 10+03

3

[

−3.420× 10+03 −3.539× 10+03

3.539× 10+03 −3.420× 10+03

]

4

[

−4.351× 10+03 −2.408× 10+03

2.408× 10+03 −4.351× 10+03

]

5

[

−4.043× 10+03 −3.174× 10+03

3.174× 10+03 −4.043× 10+03

]

6

[

−3.451× 10+03 −6.464× 10+03

6.464× 10+03 −3.451× 10+03

]

7

[

−2.998× 10+03 −7.399× 10+03

7.399× 10+03 −2.998× 10+03

]

8

[

−7.456× 10+03 −3.515× 10+03

3.515× 10+03 −7.456× 10+03

]

9

[

−3.058× 10+03 −8.295× 10+03

8.295× 10+03 −3.058× 10+03

]

10 −9.884× 10+03

11

[

−2.690× 10+03 −9.972× 10+03

9.972× 10+03 −2.690× 10+03

]

12

[

−5.403× 10+03 −9.556× 10+03

9.556× 10+03 −5.403× 10+03

]

13

[

−8.755× 10+03 −6.867× 10+03

6.867× 10+03 −8.755× 10+03

]

14 −1.127× 10+04

15

[

−5.061× 10+03 −1.127× 10+04

1.127× 10+04 −5.061× 10+03

]

16

[

−5.044× 10+03 −1.130× 10+04

1.130× 10+04 −5.044× 10+03

]

17

[

−6.497× 10+03 −1.545× 10+04

1.545× 10+04 −6.497× 10+03

]

18

[

−3.726× 10+03 −2.147× 10+04

2.147× 10+04 −3.726× 10+03

]

19

[

−4.985× 10+03 −2.547× 10+04

2.547× 10+04 −4.985× 10+03

]
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Table D.2: The Elements of AH := diag (AH1 , AH2 , . . . , AH27) (Elements 20 to 27)

i AHi

20 −3.038× 10+04

21

[

−2.495× 10+04 −3.670× 10+04

3.670× 10+04 −2.495× 10+04

]

22

[

−1.629× 10+04 −5.443× 10+04

5.443× 10+04 −1.629× 10+04

]

23

[

−5.805× 10+04 −2.551× 10+04

2.551× 10+04 −5.805× 10+04

]

24

[

−2.538× 10+04 −6.135× 10+04

6.135× 10+04 −2.538× 10+04

]

25

[

−1.718× 10+04 −7.811× 10+04

7.811× 10+04 −1.718× 10+04

]

26

[

−4.447× 10+04 −7.968× 10+04

7.968× 10+04 −4.447× 10+04

]

27 −5.723× 10+05
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Table D.3: The Elements of BH1

Row Row Elements

1 −9.954× 10+02

2 0
3 −8.899× 10+02

4 −6.384× 10+02

5 −2.213× 10+04

6 −1.478× 10+04

7 0
8 0
9 0
10 0
11 −3.908× 10+02

12 2.294× 10+02

13 0
14 0
15 2.015× 10+03

16 −6.086× 10+02

17 0
18 0
19 0
20 6.369× 10+03

21 4.330× 10+03

22 0
23 0
24 −1.141× 10+04

Row Row Elements

25 −1.048× 10+02

26 3.216× 10+02

27 0
28 0
29 0
30 0
31 1.808× 10+03

32 −2.871× 10+03

33 0
34 0
35 1.612× 10+05

36 6.148× 10+04

37 3.124× 10+04

38 2.151× 10+03

39 3.710× 10+03

40 0
41 0
42 −1.241× 10+02

43 1.222× 10+03

44 7.201× 10+03

45 −7.127× 10+03

46 0
47 0
48 −8.154× 10+02
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Table D.4: The Elements of BH̃2

Row Row Elements

1 0
2 −7.038
3 0
4 0
5 0
6 0
7 2.857
8 4.056
9 −5.722× 10−01

10 3.533× 10−01

11 0
12 0
13 −5.738
14 −9.355
15 0
16 0
17 9.625× 10+01

18 4.387× 10−02

19 1.123× 10−02

20 0
21 0
22 5.069× 10+01

23 3.751× 10+01

24 0

Row Row Elements

25 0
26 0
27 2.846
28 −8.662× 10−01

29 −5.886
30 −3.125
31 0
32 0
33 8.625× 10−02

34 −6.978× 10−01

35 0
36 0
37 0
38 0
39 0
40 −2.050
41 2.021
42 0
43 0
44 0
45 0
46 −2.863× 10−02

47 3.811× 10−01

48 0
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Table D.5: The Elements of CH1 (Columns 1 to 37)

Column Column Elements (4 per column)

1 0 0 0 9.998× 10+01

2 0 0 −6.949 0
3 0 0 0 5.881× 10+01

4 0 0 0 −1.250× 10+02

5 0 0 −1.498× 10+01 0
6 0 0 1.360× 10+01 0
7 0 0 −3.048 0
8 0 0 −1.152× 10+01 0
9 0 0 −1.508× 10+01 0
10 0 0 −7.829 0
11 0 0 0 −7.590× 10+01

12 0 0 0 3.809× 10+01

13 0 0 0 3.714
14 0 0 0 −3.786
15 0 0 −3.478× 10+01 0
16 0 0 9.139 0
17 1.423× 10+01 0 0 0
18 0 0 2.334× 10+01 0
19 0 0 −5.347 0
20 −2.850× 10+02 0 0 0
21 2.956× 10+03 0 0 0
22 −1.017× 10+01 0 0 0
23 −2.024× 10+01 0 0 0
24 2.714× 10+03 0 0 0
25 0 0 0 2.433× 10+01

26 0 0 0 7.796× 10+01

27 0 0 0 −6.854× 10−01

28 0 0 0 −1.910
29 2.352× 10+01 0 0 0
30 −2.471× 10+01 0 0 0
31 1.898× 10+03 0 0 0
32 −9.277× 10+02 0 0 0
33 4.944× 10+01 0 0 0
34 −1.866× 10+01 0 0 0
35 0 −1.473× 10+02 0 0
36 0 −1.335× 10+02 0 0
37 0 2.735× 10+02 0 0



134

Table D.6: The Elements of CH1 (Columns 38 to 48)

Column Column Elements (4 per column)

38 −2.478× 10+03 0 0 0
39 1.771× 10+03 0 0 0
40 0 −3.891× 10+02 0 0
41 0 −7.074× 10+02 0 0
42 0 0 −1.695× 10+02 0
43 0 0 2.103× 10+02 0
44 0 5.481× 10+02 0 0
45 0 1.996× 10+01 0 0
46 0 1.774× 10+02 0 0
47 0 1.148× 10+03 0 0
48 0 0 0 −7.601× 10+02

Table D.7: The Elements of CH̃2
(Columns 1 to 23)

Column Column Elements (4 per column)

1 0 0 0 9.998× 10+01

2 0 0 −6.939 0
3 0 0 0 5.881× 10+01

4 0 0 0 −1.250× 10+02

5 0 0 −1.496× 10+01 0
6 0 0 1.358× 10+01 0
7 0 0 −3.044 0
8 0 0 −1.151× 10+01 0
9 0 0 −1.506× 10+01 0
10 0 0 −7.818 0
11 0 0 0 −7.590× 10+01

12 0 0 0 3.809× 10+01

13 0 0 0 3.714
14 0 0 0 −3.786
15 0 0 −3.473× 10+01 0
16 0 0 9.126 0
17 1.400× 10+01 0 0 0
18 0 0 2.331× 10+01 0
19 0 0 −5.339 0
20 −2.805× 10+02 0 0 0
21 2.910× 10+03 0 0 0
22 −1.001× 10+01 0 0 0
23 −1.992× 10+01 0 0 0
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Table D.8: The Elements of CH̃2
(Columns 24 to 48)

Column Column Elements (4 per column)

24 2.671× 10+03 0 0 0
25 0 0 0 2.433× 10+01

26 0 0 0 7.796× 10+01

27 0 0 0 −6.854× 10−01

28 0 0 0 −1.910
29 2.315× 10+01 0 0 0
30 −2.432× 10+01 0 0 0
31 1.868× 10+03 0 0 0
32 −9.130× 10+02 0 0 0
33 4.866× 10+01 0 0 0
34 −1.836× 10+01 0 0 0
35 0 −1.589× 10+02 0 0
36 0 −1.440× 10+02 0 0
37 0 2.949× 10+02 0 0
38 −2.439× 10+03 0 0 0
39 1.743× 10+03 0 0 0
40 0 −4.197× 10+02 0 0
41 0 −7.629× 10+02 0 0
42 0 0 −1.692× 10+02 0
43 0 0 2.100× 10+02 0
44 0 5.911× 10+02 0 0
45 0 2.152× 10+01 0 0
46 0 1.913× 10+02 0 0
47 0 1.238× 10+03 0 0
48 0 0 0 −7.601× 10+02

Table D.9: The Elements of DH1 and DH̃2

Elements of DH1

Row Row Elements

1 2.196×10+02

2 3.266×10+02

3 2.704×10+01

4 -8.911×10−01

Elements of DH̃2

Row Row Elements

1 0
2 0
3 0
4 0
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D.2 The Uncertainty and Performance Weights

Let the uncertainty and performance weights, given in Chapter 5, be written as

W∆ :=





AW∆ BW∆

CW∆ DW∆



 , (D.2)

Werr :=





AWerr
BWerr

CWerr
DWerr



 , (D.3)

Wknoise :=





AWknoise
BWknoise

CWknoise
DWknoise



 , (D.4)

Wu :=





AWu
BWu

CWu
DWu



 , (D.5)

(D.6)

Wref := 1. (D.7)

The entries for the matrices (except for Wref , since it is just a constant unit gain) are

found on the following page.
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Table D.10: The Elements of AW∆

Row Row Elements (5 per row)

1 -4.500×10−01 1.055×10+01 -3.375×10+02 -4.235×10+02 -4.235×10+02

2 0 -4.500×10−01 -3.375×10+02 -4.235×10+02 -4.235×10+02

3 0 0 -1.200×10+04 -1.355×10+04 -1.355×10+04

4 0 0 0 -2.000×10+04 -1.700×10+04

5 0 0 0 0 -2.000×10+04

Table D.11: The Elements of BW∆ , CW∆ , and DW∆

Elements of BW∆

Row Row Elements

1 -4.320×10+02

2 -4.320×10+02

3 -1.382×10+04

4 -1.734×10+04

5 -1.734×10+04

Elements of CW∆

Column Column Elements

1 −3.248
2 −3.248
3 1.039×10+02

4 1.304×10+02

5 1.304×10+02

DW∆ = 1.330×10+02

Werr =













−2.918× 10+01 −2.266× 10+01 8.448× 10+01 4.816× 10+01 −2.839
2.266× 10+01 −1.324× 10+01 −2.597× 10+01 −1.481× 10+01 8.730× 10−01

0 0 −9.970× 10+01 −1.437× 10+02 −9.331
0 0 1.437× 10+02 −1.549× 10+02 5.319

5.071 1.559 −1.666× 10+01 −9.498 5.600× 10−01













Wknoise =









−2.028× 10+01 −3.844× 10+01 −3.443× 10+03 −3.747× 10−03

3.844× 10+01 −5.042× 10+01 2.546× 10+03 2.770× 10−03

0 0 −2.000× 10+04 −2.068× 10−02

−2.498× 10+01 −1.847× 10+01 1.378× 10+02 1.500× 10−04









Wu =









−1.000× 10−03 −6.828× 10+01 −1.918× 10+01 −4.189× 10−01

0 −3.740× 10+03 −2.780× 10+03 −3.014× 10+01

0 2.780× 10+03 −1.209× 10+03 8.466
−9.742× 10−01 7.009× 10+01 1.969× 10+01 4.300× 10−01








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