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Abstract

We present a simple, self-contained formulation of a
performance enhancing, stability preserving, receding
horizon control strategy for a system where preview
information is available for the disturbances. The sim-
plicity of the derivation is due to (and its benefits some-
what offset by) a set of stringent and highly struc-
tured assumptions. The formulation has two notable
features: it uses a suboptimal value function for termi-
nal cost, and relies on optimization strategies that only
require a trivial improvement property, allowing imple-
mentation as an “anytime” algorithm. An example of
tracking control of an air-to-air missile illustrates the
possible benefits of this control methodology.

1 Introduction

The availability of faster and cheaper microprocessors
has made it possible to implement automatic control
algorithms which are much more complex and com-
putationally intensive than anything that could have
been implemented a generation ago. The control algo-
rithm development presented here is a version of reced-
ing horizon control and is computationally intensive,
and, in some cases, may offer significant performance
increases. Recently, many groups have developed theo-
retical results to prove the stabilizing and performance
enhancing properties of the receding horizon approach
[1], 12], [3], [9] - [15], [17], [20]. By combining the ideas
from [18] and [4] for continuous-time nonlinear systems,
the work of Jadbabaie, Yu, and Hauser [7, 8] provides
the basis for most of the results in this paper.

We extend the methods of receding horizon control to
the case where a discrete nonlinear dynamic system is
driven by disturbances, and where previews of these
disturbances are available. OQur approach uses a sub-
optimal value function as a terminal cost. Also, we only
require improvement, not optimality, in the optimiza-
tion step so that we can handle local minima or reduced
computational resources. The ability to terminate the
optimization early makes our approach implementable
as an “anytime” algorithm.

In §2 we introduce the dynamic system and our as-
sumptions. Sections 3, 4 give the control objective and
algorithm. In §5 an important lemma unlocks the per-
formance and stability results that are shown in §6. We
formulate a missile tracking problem in §7; the results
and a comparison with the legacy controller are in §8.

2 Definitions, problem setup and assumptions

First, we need a few mathematical preliminaries

and notational conventions for our dynamic system

ZTr+1 = f(xg, wg,ur), where zp, € R™ with disturbance

wy, € R!, and control input u; € R™.

K-functions: a(-):[0,a) — [0, 00) is a K-function if it
is continuous and strictly increasing on [0,a) and
a(0) =0.

Balls: For r>0 and n€ Z*, B :={z € R":||z||<r}.
When n is clear from context write B;.

Wik, k+N—1] : Shorthand for the sequence {w; }fi,iv_l

lo+ Spaces : Y 27 l|zk]|? <oo =z € loy.
The functions that define the problem and their as-
sumptions follow
f:R" x R' x R™ - R™ Tpy1 = f(xk,wk,uk) with
7(0,0,0) =0 and f continuous on R™ x 0 x R™.
h : R" x R® — R": The error function, con-
tinuous with h(0,0) = 0. Also, 3 K-function
7(), h(z,u) > h(z,0) > 7(||z|]), Vz € R",
Vu # 0 € R™. Additionally, Y32, h(zk,ur)<oo
= S l2+, S l2+.
g : R - R*: The effect of the disturbance on the
cost, a continuous function with g(0) = 0, and
Joy > 0 € R such that g(w) > aq||w|]? Yw € R'.
Additionally, Yw € Iz, Y02, 9(wg) < 0.

én : ZXR xRN x R™N 5 R™: The system flow
function, which takes the system’s state forward
N steps in time
Thot N = ON (K0, Tho> Wik, ko+N—1]5 Ulko,ko+N—1])-
p : R®™ — R™ The baseline globally stabilizing
controller, referred to as the legacy controller,

which meets the following norm bound. 3r >0
such that for each N, oy € K: Va, € B},

(85 (R, i, 0, {u(@) DS < on(llanl)-
V : R" - R"™: V is a continuous positive definite
function such that Yw € R, Vz € R™

V(f(@,w, 1)) + bz, m(@)) - glw) < V().
Recursively on the flow of the system, the above

gives V(ak,) > L5y, (A, ulan)) — gwn))),
Vw, Va,. This shows V(§) > M, (&) with

Mu() =sup Y (h(zk, plwr)) = g(wr) (1)

Y k=ko

subject to zx, = & and zr1 = f(zk, we, u(zg)).



The bound on M, (§) above implicitly shows that
the value function is well defined V¢ with the
controller p, which is a rather strong statement
about the quality of the legacy controller.

Ln : R"xR”Y xR™¥ — R: The cost-like function
ﬁN(fEkoaw[ko,k0+N71]7U[ko,k0+N—1]) =
ko+N-—1
Z [h (¢k7ko (ko Tho Wik, k—1] au[ko,k—l]);uk) _g(wk)]
k=ko
+V (d’N(kO: Tko> w[ko Jko+N—1]» u{ko,ko+N71] ))
Ac : R™N oR™ The optimization engine,

with set valued range, gives trivial improvement
v € Ac(u) = C(v) < C(u)

We will use C(-) = LN(Tko, Wik, ko+N—1]> ")

S, : R" x RN x R™N — R™Y: A control se-
quence time shift that appends a control action
from the baseline controller.

STk Wik k- N—1]> Uk, bt N—1]) *=
{u[k+1 k+N-—1]5 (¢N<k Ty Wik oy N 1]5 U [k7k+N71]))}

3 Control Objective
Using the legacy controller, the worst case cost incurred
starting from some state z, = § is given by M, (¢),
and our goal is to use N steps of preview information
about the disturbance, w[k kb N—1]° to choose a value of
uy, that results in a lower cost and retains a guarantee
of stability. We use A¢, the optimization engine, to
minimize Ly, the incurred cost over an N step horizon
with a terminal state worst case disturbance penalty.
4 The Control Strategy

With the framework above, we can define the subopti-
mal look-ahead disturbance rejection receding horizon
control algorithm (RHC algorithm).

RHC algorithm: With an N-step preview of the dis-

turbance, w[,c kb N—1]7 available

1. (a) Start-up, if k = ko,
i = { (¢ (k, 0, {u(m) HA )

*kO E AEN(ka,w (A)
(b) Running
U= Sy(Tr-1, wfk—l,k-‘,—N—Q]’u

k ~
€ ALn @l ppy-ap) (u)

*,k
2. Set up = u,,",

N-1
=0

[kg,ko+N—1]° )

Jr,k—l)

increment k and repeat.

5 A Keystone Lemma

The following lemma shows that the cost-to-go of im-
plementing one step of the control strategy and re-
optimizing over the next N steps is no greater than
the IV step preview cost starting from z,. This lemma
acts as a keystone in all our derivations.

Lemma 1 Under the control strategy defined above,

; »
for a given Wik kot N] and T,

% *,k
Ly (xko-i-la w:[pko+17k0+N]7 U*’k0+1) + h(xko ) uk 0) g(wzo)

;7k0
Proof: S LN (o Wiy g1 0)
—ko+1 P *,ko
Let @y korny = Su (Tko, Wik, ko+N—1]° u[ko,ko-',-N—l])?

and note that uf”l = u?’ko, Vi€ {ko+1,ko+N—1}.
Following the definition and manipulating we get the
equation chain below, where for size we let k; := ko +1.

ok
‘CN('Tkw [k1 k0+N] )
ko+N

- Z[h@" ik, T 0 lk - ) E) 9]
k=k1 d

Ty, if ak—1 and wP are used

k
14 ( N (K1, Tk, wf)khko—kN] [k1,ko+N]) )

~

~
Tro+nN+1 if wF~1 and wP are used

= —(h(@ro, upy)®) = g(wh,)) + (h(wro, ug)®) — g(w})))
ko+N-—-1

+ 30 [t oy i) ui*) - o))

k=k1

zp if u* k0 a.nd wP are used

P —k1 —k1
+ h(¢N—1(k1; Ty, w[kl,ko-i-N—l]?u[k1,ko+N—1])’ Uk0+N)

~-
Tro+n if @k—1 and wP are used

ks
- g(wzo-l,-N) +V (?N(kla Tkys w[pkl,ko-‘rN]’ u[klako-HV])J)

~-
Tho+N+1 if @k—1 and wP are used

= — (h(@ro, u) — g(w},))
ko+N—1

+Z[h(¢k ko(ko,T ko W [kok 1]’ “kaok 1]) *ko) —g(wi’)]
k=ko -

zy if u*:*0 a.nd wP are used

+ h(:ﬁN(koﬂﬂkoawﬁo,kﬁN— P e

k1
[ko,k0+N 1]) uko—‘,—N)

~
Tro4n if wF-*0 and wP are used

—k
- g(sz+N) +V (?N(kly Tk, wf)khko-i-N]’ u[kll,ko—i-N])J)

~~

Tho+N+1 if @*—1 and wP are used

(a) L
< = (h(@ro, up) = g(wf,))

ko+N-—1
Z[h(¢k ko(Ko T ko W, [kok 1 [*kak 1]) *k) —g(w’é)]
k=ko

g if u* k0 a.nd wP are used

k
+V (?N(kO; Tko > w[pko,k0+N71]7 ’[kkooko_;_N 1]) )

~-
Tro4n if wF*0 and wP are used

*,k
= (h(xko ’ uk 0) - g(wzo)) + *CN(wko ) wf)ko,ko+N71]7 U*’ko)

(a) is by the property of V from its definition, which
is valid here since the control at kg + N is from p. By
the sub-optimality of u we know that



y4 *,ko+1
ﬁN(mko+17w[ko+1’ko+N]au ’ )

P —ko+1
< 'CN(mko+1>w[ko+1,k0+N]7u )

which, given the above chain of relations, leads to the
desired result. n

6 Performance and stability

By bounding the cost we can show that the RHC strat-
egy achieves a cost that is no greater than our upper
bound for the cost under the legacy controller.

Theorem 1 Vw?P € lo, the cost resulting from the ap-
plication of the RHC algorithm is bounded as follows

o0

> (how,u™*) = g@p)) < V(an,)

k=kg

Proof: Let € >0 and w? € l54, from Lemma 1

P *,ko+1
£N(xko+17w[k0+17k0+]v]7u ) S

.k %,
— h(.’L‘ko,uzo 0)_g(’u)go)+£N(:L'k0 s wfko,ko+N71]a u* ko)

Taking this relation for zy,,...,Zg+1—2, L > 0 and
summing and canceling we have, with kr, ;== ko + L —1

D * kL
'CN(ka7w[kL,kL+N,1]au ’ ) <
ko+L—2

—Z [h ;ck,uk

k=kq

(wk)] +£N(£Ek0, f)ko,ko—i-N—l]a u;,ko)

If we rearrange the previous equation and use the def-
inition of L (k, , wfy, x, | n_1p4***) we have

L:N(xkoawf)ko,ko+1v71]au;’ko)
ko+L—2 kr+N-1
k
> > (horup®) - g@) + D [ gwh)
k=ko k=kr

*,kr *,kr

+h(¢k—kL(kLﬂka) Wigp k- 1]’u[kLk 1]) Uy’ )]

~~

zp if u*'*L and wP are used

*kL
+V(¢N(kL7$kL7w:[DkL,kL+N71]7 Uik kp+N— 1]))

v

Tho+L_14N if u*'*L and wP are used

Since V' > 0 and h > 0, we have the following

P %,k
LN (Thos Wiy goyn—1pW7°)
ko+L—-2 ko+L—14+N-1

> > (h(mk,ui’k)—g(wi))— >

k=ko k=ko+L—1

g(wy)

By our assumptions on g we know that ) g converges
and g(w) > 0, Vw, thus, for L large enough

ko+L—1

) e > [ hlon, up*)-g(w)
k=ko

D
LN (@ko Wiy o4 1778

Taking L — oo and rearranging yields

oo
> (hlow,up®) - g@))

k=ko

< EN(xkO,wf’ko,k0+N71],u;’k°) +e€
(a)

< ‘CN(mkoa [ko ko+N—1]> [N(xko)

(b)
< V(.’L‘ko) +e€

(T4 N-1)]) + €

Inequality (a) comes from the use of Az, to get u**o
from the control sequence under . (b) results from V’s

being an upper bound on the value function. ™

Lemma 2 Using the RHC algorithm with any known
disturbance trajectory wP? € loy and any initial condi-
tion z, € R" results in a state trajectory in loy .

Proof: Theorem 1 gives us
oo

Vak) > Y (hlow,up®) - g(u])

k=ko

We know that for bounded z, V(z) < oo, and by as-
sumption Y g converges for any w? € ly;. Yielding

Z h(mk,u;’k) < 0

k=ko

which by the assumptions on h gives = € lo . ™
This gives the result that if wP € [y then z € [y, im-
plying z — 0 as kK — oo, and we can use result in the
following theorem to have global asymptotic stability.
Theorem 2 The system xp11 = f(xk,ur) is globally
asymptotically stable under the RHC' algorithm.
Proof: This proof is based on the time-varying Lya-
punov stability proof in [19]. First, a few results are
needed when w? := 0.

Using V' (0) = 0 and the continuity of £,, allows us to
upper bound Ly in some ball around the origin, so
there exists some K-function 8 and some r; > 0 such
that V¢ € B?, Vn € BTN

~(&0,m) < B(IEN +lnl) 2)

Using the positivity of V' and h along with the other
assumptions on h we get V& € R™, Vn € R™N

Ln(&,0,m) > h(&mpy) 2 h(&,0) > 7(El)  (3)

Recall from the assumptions on y that Vz;, € B}

717

i) ik e+ v -1yl < o ([lz]]) (4)
From the keystone lemma, under RHC Vk > ko
»CN((Ek,O,uZ’k) S ,CN(.’L'kO,O,’U,z;kO) (5)
Now, for any € > 0 pick J. so that
d. < min(r,7) (6)
0’(56) < 7m (7)

Bl +0(de)) < 7(e) ®)



Then for any zy, € By, we have

(4) (7)
(o) ko, kot N-11ll < o([|Zko ) < 0 (de) < 11

which implies that 4(zk, ) ko ko+N—1] € B *N. We can
now build the following chain for all k > ko

(3) %k
(|zell) < Ln(zr,0,u™)
) .
S EN(wk0707uk:)k0)
(2)
< LN (Thos 0, (T ko ) (ko kot N—1])
4)
< Blzkoll + [11(Tko ) ko, ko+-n —11l)
< B(de +(0e))
(8)
< 7(e)

showing that if z, € B} with 0. defined as in (6)-
(8) then =, € B Vk > ko, yielding stability. Since
wP := 0 € ly4, Lemma 2 then gives zj, — 0, resulting
in global asymptotic stability. ™

7 Missile tracking control formulation

In this section, we illustrate the RHC algorithm on
a single-input, single-output missile example, using a
gain-scheduled PI controller as the legacy controller
and the commanded normal acceleration as a distur-
bance. Our goal is to use the existing controller, the
preview of the desired trajectory, and online optimiza-
tion to improve the missile’s tracking properties. A
scenario for this is to view the desired trajectory as a
disturbance that will be known a short time in advance.

The dynamics of the system include missile, actuator,
and control states. The pitch axis missile model’s states
are angle of attack (a, rad) and pitch rate (6, rad/s),
with elevator deflection (4, rad) as the input

alsl -l g JoMHE e
0] |20 (a) $50,, 01T Hon,

The actuator’s first-order lag model is

d
20 = sat, (wn [Bema — sata(d)] )
_ z if |z| <a
sata(z) = {asgn(:c) else

with d = 20:3; rad and r = 2605; rad/s limiting
elevator deflection and deflection rate, respectively.
The legacy controller is a gain-scheduled PI controller,
based on [16] using the popular 3-loop topology. Its in-
put is the vertical acceleration command (gemq in g’s)

and its output is elevator command (d¢md)
d

7 & = —Kalla)g — 6 + Ky (|a|) Kne(|a]) gema
Sema = Kr(laf) |Ki(lal)€ -6
g = gs (C\’né(S + 7naa)

where g is the vertical acceleration of the missile.

Values for the physical parameters and environmen-
tal variables are as follows: dynamic pressure, § =
3121.81bf/in’; reference area, s = 0.1364 £t2; mass,
m = 5.35 slugs; velocity, V = 1886.2 ft/s; reference
length, d = 0.4167 £t; longitudinal moment of inertia,
I = 52.695 slug—f£t?. The values for the derivatives of
the normal (subscript n) and pitch moment (subscript
m) aerodynamic coefficients with respect to the second
subscript (a, 8, or ) are Cpo = 30.09, Cps = —4.45,
C,.; = —5998.5, and Cp,s = 166.67.

The autopilot gains K,.(|a|), K.(la|), Ki(Ja|), and
K.(Ja]), and the aerodynamic derivative Cy,(|a|) are
even functions of the angle of attack and are repre-
sented by lookup tables. The tables are parametrized
by 5 numbers: 3 a-values (@ = [0 5/57.3 1]) in ra-
dians and 2 coefficient values (which are constant for
|a] > 5°). The values of the coefficients are shown
below, and an example is plotted in Fig. 1.

|a| | Cm K. K, K; K,
0 109.72 1.944 0.018085 18.186 0.067252

[25,1]| 0 1261 0.0654 8.467 0.067552

.
@

K g

0 0.2 08 1

0.4 0.6
|a|(rad.)

Figure 1: A plot of K;.

Our formulation requires a static, state-feedback legacy
controller, so we group the states of the PI-controller
with the plant. We model the acceleration command’s
evolution with a first-order filter to eliminate unrealis-
tic high frequency tracking commands.

Defining the state vector & := [@ £ & gema]” we can
form a discrete model using a first-order Euler approx-
imation with sampling period T as

(331)]9_;,_1 =z + T I:JL'Q - TZ—; (Cnaéﬁ + C_'m; satd(x4))]

gsd d -
(£2)i41 = To + quT (C’m(|x1|)w1 + 57 Cmi®2

+Cms satq (w4))
(2)i+1 = 9+ T | =22 + Kallo1]) (Knc(J1 )5 = 9) |
(T4)k+1 = x4 + T (Satr [wn (ug — satq (534))])
(z5)p+1 = 725 + (1 — 7wy,

where the index k has been dropped from the right-
hand side. The value for 7 is 0.5.



Under the legacy controller, uy = u(zy), where
w(z) = Kp(|z1]) [Ki(|21])zs — 22].-

We will allow the RHC algorithm to adjust the con-
trol, ug, as given in §2. We penalize tracking error, fin
deflection, and fin deflection rate with the error signal,

32(?;7” (én5$4 + C_vnaxl) — T
e = T4
wn (ug — 24)

Choosing error weights was not a focus of this work,
but the equal weighting for tracking errors in g’s, and
control actions in rad and rad/s seemed reasonable,
which the simulations have borne out. To match our
assumptions on h and g, let v = 2 and define

bz, ur) == [lex]?, g(wg) == 7?[|w?.

Due to our trivial improvement property in the op-
timization step, we can use any canned minimization
routine to act as Ac.

The discrete time model was evaluated using a sam-
pling time of Ty = 0.001 s, and all simulations were run
with this timestep. The control signal of the legacy con-
troller, whose dynamics were folded into the plant, was
also updated at this rate. For the example, we took
a brute-force, non-scalable approach to computing a
suitable V by attempting to compute M, on a “dense”
rectangular grid. Using the iteration proposed in [6],
and a finite horizon of 1200 steps, we computed ap-
proximations to the quantity in (1). Since the horizon
is finite, with no guarantee that the maximum has been
obtained, we have actually computed a lower bound for
My, and hence not a valid V. Nevertheless, we use it,
knowing that the conditions (which are sufficient, not
necessary) of the Theorem 1 and 2 are not satisfied.
Using a PC (Pentium III, running 1.0 GHz), we com-
puted the quantity on a 13x13x13x13x13 uniform grid
with |z;| < B;, 8 =[-3 3 .3 .3 30], in about 3 hours. At
double precision (not necessary) it takes about 3MB
to store this table. This approach leaves a lot to be
desired, and many alternatives could be pursued to re-
duce these demands. In the short term, it allowed us
to complete the example and put off research on learn-
ing theory and function representation. The choice of
v = 2 was found to be sufficiently large to result in a
finite-valued value function, though, for instance, 1.4
was not.

8 Missile tracking simulations and results

Results comparing the closed-loop responses of the re-
ceding horizon and the legacy controllers to square and
sine wave disturbances are shown here. The receding
horizon controller input was updated every 0.01s, or
every tenth step. The value function was linearly in-
terpolated to calculate the terminal cost. The preview
time was 0.1s.

On-line optimization was done using NPSOL, [5], with
numerically calculated gradients. The maximum iter-
ation limit was set to 1; higher limits slowed the opti-
mization considerably without yielding discernibly bet-
ter performance. Each on-line optimization calculates
a series of optimal inputs, {vk}ﬁ‘;ﬁv ~1 for the upcom-
ing N-step horizon. Since only the first of these, ug—g,,
is implemented (for 0.01 s), the number of parameters
in each optimization may be reduced by reducing the
number of bases corresponding to the remaining 0.09 s
of preview. If the preview time is 0.1 s, equivalent to
100 timesteps, then using equal bases requires optimiz-
ing over 10 parameters because the RHC input, ug, is
updated every tenth step. Instead of using 10 bases,
each corresponding to 10 timesteps, to optimize the in-
put over the 0.1s horizon, the optimization could be
done, for example, using 6 parameters (2 10-step bases
followed by 4 20-step bases) or 5 parameters ([10 20 20
20 30]) and so on. The first basis should be 10 since
uy, is updated every ten timesteps. The use of such un-
equal bases precludes the use the shift operator, S, to
provide a ‘warm start’ for the next optimization. For
the simulations shown here, 6 bases ([10 10 20 20 20
20]) were used. The initial guess used for each opti-
mization was the solution to the previous timestep’s
finite horizon optimal control problem.

All simulations were run on the nominal system as well
as for 20 additional cases with uniformly distributed,
random uncertainties of up to 10% in the aerodynamic
coefficient derivatives (Crn(||), Cha, Cns, C, 4, and

Cms) physical parameters (s, m, d, and I) and envi-
ronmental variables (g and V).

Simulations were done using a 1Hz 30g magnitude
square wave disturbance (beginning at ¢ = 0.15s).
Plots comparing the performance of the receding hori-
zon and baseline controllers are shown in Fig. 2.
Examination of the figures shows that the 0.1 s preview

-20 Legacy Controller

= = RHC

— disturbance
Il

-40 I I L L L L I I I
0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2

Acceleration (g)

0.2 T T T

5 (rad)

L
0.2 0.4 0.6 0.8 1 12 14 16 18 2
Time (s)

Figure 2: 30g square wave input.



leads to anticipative action, as expected, and that the
on-line optimization significantly improves the tran-
sient response as well. It is also interesting to note
that the maximum fin deflection using the RHC is not
much different than when using the legacy controller.
The fin deflection limit is 0.349rad, and the rate limit
is shown on the plot. It is comforting to note that
the RHC algorithm does not entirely break down when
the parameter uncertainty is added and continues to
function in a similar way.

The simulation results from applying a 1Hz 30 g mag-
nitude sine wave input are shown in Fig. 3. Again, as

w
S

N
=]

[
o

|
AN
[S)

Legacy Controller A

- = RHC le*

= disturbance ~ N
I I I 1 I

0.2 0.4 0.6 0.8 1 12 14 16 18 2

Time (s)

Acceleration (g)

!

N

=)
T

)
w
S

0.2 T T T

/ rate limit

3 (rad)

—02 L L L L I I
0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 18 2

Time (s)
Figure 3: 30g sine wave input.
can be expected, the RHC does a better job of tracking
the input than the legacy controller. In this case, how-
ever, the RHC also achieves its superior performance
with a smaller maximum fin deflection by intelligently
applying control effort. Again, the perturbed systems
respond in a manner similar to the nominal one.

9 Conclusions

We have shown that, in a discrete-time context, a re-
ceding horizon control algorithm can be used to take
advantage of previews of exogenous signals (distur-
bances or tracking commands) to exhibit better perfor-
mance than some nominal controller, while still guar-
anteeing stability of the closed-loop system.
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