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ABSTRACT: The subject of this report is a methodology for the transformation of (experimen-

tal) data into predictive models. We use a concrete example, drawn from the field of combustion

chemistry, and examine the data in terms of precisely defined modes of scientific collaboration.

The numerical methodology that we employ is founded on a combination of response surface

technique and robust control theory. The numerical results show that an essential element of sci-

entific collaboration is collaborative processing of data, demonstrating that combining the entire

collection of data into a joint analysis extracts substantially more of the information content of

the data.
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INTRODUCTION

Development of predictive models for complex natural phenomena and industrial processes is at

the core of scientific activity. With the present problems facing our society—threat of terrorist

attacks, global warming, earthquake preparedness, safety of transport of nuclear waste, pollu-

tant emission from automobile engines, etc.—one has to have a certain degree of confidence

to rely on model predictions for political decisions, economic forecast, or design and manufac-

turing of automotive engines. Models of such complexity call for integration of large amounts

of information, collected by numerous researchers and often from different disciplines. While

collaboration among scientists is widely accepted as truism, it usually takes the form of a simple

exchange of data and merging of computer codes. The subject of the present report is a quan-

titative demonstration that collaborative processing of the entire data base leads to systematic

development of predictive models.

To make the presentation of the ideas clearer and results more concrete, we focus on a “real-

world” example: chemical kinetics of pollutant formation in combustion of natural gas. The

level of complexity, the knowledge base available, the degree of uncertainty, and the societal

importance of the subject all make this system a suitable subject for the analysis.

The purpose of a natural gas chemical kinetics model is to predict concentration of com-

bustion products, such as NO and CH2O, which are major atmospheric pollutants yet minor

chemical species in the context of the combustion chemistry. An accurate description of these

products necessitates inclusion of many (hundreds) reaction steps. Mathematically, the evolu-

tion of chemical concentrations is governed by coupled first-order ordinary differential equa-

tions (ODEs), a nonlinear system that does not possess a closed-form solution. The model’s

authenticity relies on the knowledge of the reaction network, which sets the structure of the

ODEs, and the model parameters, in this case reaction rate coefficients.

How does such a complex model come into being? In the case of natural gas combus-

tion, half-a-century of research across five continents has established consensus for the reaction
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steps of the system to a degree that the mathematical structure of the model can be assumed

known. Reaching consensus on the “correct” parameter values has been more problematic.

Scrupulous efforts on the part of chemical kineticists have led to isolation of small groups of

reactions at well defined experimental conditions. The collected experimental observations are

interpreted in isolation, focusing typically on one or two chemical reaction steps and making

assumptions for the rest of the chemistry. Thesederiveddata are reported in the form ofcon-

clusionson the presence or absence of reaction pathways and the values of the corresponding

rate parameters. The working paradigm of the community has been that combining information

collected from such individual studies should create a “comprehensive” model of the process.

This strategy, indeed, advanced the understanding of reaction networks, their interworking, and

had general implications to practical combustion. Yet, predictive capabilities of such models

did not materialize—assigning literature recommendations to model parameters seldom, if at

all, results in adequate quality of model prediction on the whole [1]. This failure was attributed

to compound uncertainty spanning multi-dimensional space of model parameters, the presence

of intrinsic correlations among them, and restriction of the “in-isolation” data analysis to only

one or two model parameters while keeping the rest at literature recommendations [1]. The

effectiveness of the compartmentalized data processing in developing predictive models thus is

brought into question.

An alternative approach, fostered by the GRI-Mech project [2], is to carry out the anal-

ysis using the entire knowledge base available on the system, as a collaboration among all

the data. The latest GRI-Mech release is comprised of 325 reversible reactions among 53

chemical species [2]. It was trained on 77 experimental targets, well-documented and expert-

evaluated experimental observations. The training was performed using the Solution Mapping

(SM) method [1, 3], which included the following steps. For each of the targets, a sensitivity

analysis identified a set ofactivemodel parameters, i.e., those having measurable effects on the

modeled outcome. After that, 77 statistical surrogate models were developed with a response-

surface technique, through a set of computer simulations arranged in a factorial design [4, 5].
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Each surrogate model approximated the numerical solution of the ODE model for a given target

by a second-order polynomial in the respective active model parameters over their ranges of

uncertainties. A joint optimization was then performed, adjusting a small subset of the overall

102 active model parameters to best fit the 77 surrogate models to their respective experimental

targets.

Recently, we found that the statistical surrogates can be useful not just in model optimiza-

tion, but also in prediction of model uncertainty. The latter was demonstrated through appli-

cation of constrained polynomial optimization from Robust Control theory [6]. In so doing

the paradigm of a model is shifted from considering model parameters as “unique”, predeter-

mined values with individual, uncorrelated uncertainties to including the actual experimental

data, along with the physicochemical theoretical constraints if available, as the integral part of

the model, with model parameters playing a role of internal variables. In other words, instead

of the two-stage approach—i.e, estimation of model parameters from fitting experimental data

followed by model predictions using the obtained estimates—we transfer the uncertainties of

the “raw” data into model predictiondirectly.

The present report pursues these ideas further, showing wider applications and more general

implications for collaborative data analysis. We focus on the benefits of what we callcollab-

oration of data. It does not change the way experimentation is done, but requires a different

approach to analyzing even one’s own observations and, as a consequence, places new standards

on data reporting. In this approach, “reporting an experiment” consists of documenting three

items: measured outcome, its estimated uncertainty, and a model of the experimental system.

Taken together, these three pieces of “data” assert, albeit implicitly, what was learned from one

specific experimental effort. A centralized data repository, actual or virtual, collects these as-

sertions from scientists all over the world. Anyone, from a contributing scientist to practicing

engineer to policy-maker can query thecommunity data. Questions can be posed such as “Is a

given set of assertions self-consistent?,” “What is the best least-squares fit to reconcile the as-

sertions,” and “For a given model of global warming, what range of annual temperature changes
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are consistent with the assertions?”. Once such questions are translated into a suitable math-

ematical formalism, automated algorithms can use all available assertions for one to infer an

answer to the posed question. The purely mathematical task of extracting desired information

from all reported experiments is relegated to algorithms. We compare this proposed methodol-

ogy to that of common practice, where reported data are of a more derived nature, often with

additional assumptions, and where analysis combines one’s own experimental results with the

derived reported data of others producing and reporting new derived data. We demonstrate the

methodology with the GRI-Mech dataset—an existing data repository of the type required for

collaborative data analysis. We employ rigorous mathematical tools and compare in quantitative

terms different modes of scientific data collaboration.

PROBLEM FORMULATION

We base our analysis on the 77 surrogate models together with the training data (see Appendix

A). The active model parameters form a 102-dimensional real vector,x = [x1, . . . , x102]. A

priori knowledge, with centering and normalization, confines their values to the unit hypercube,

H, in 102-dimensional space,−1 ≤ xk ≤ +1. The hypercube represents the current “literature

recommendation”: the center ofH is treated as the set of “recommended values” and each of

its [−1 +1] sides as the “community evaluated uncertainty” for the corresponding active pa-

rameter. Associated with an experimentE is a dataset unit: a measured outcome, experimental

uncertainty, and model, written(DE, UE,ME). In the present case,ME is the surrogate model,

a polynomial which models the effect of active parameters on the outcome of the experiment

E. Parameters consistent withE and a priori information are those which satisfy

|ME(x)−DE| ≤ UE and x ∈ H.

We will refer to them as thefeasibleset,FE. The above forms anassertion, a set of constraints

that the active parameters must satisfy. There are 77 different experimental dataset units under

consideration, drawn from different physical arrangements and conditions. We identify these
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dataset units by an integer subscript, i.e.,(Di, Ui,Mi). The feasible set implied by all dataset

units is the intersectionF =
⋂77

i=1 Fi.

Given the GRI-Mech dataset—(Di, Ui,Mi), i = 1, . . . , 77— our goal is to make apredic-

tion for a new target,E0, still within the domain of the accepted physical model. For instance,

having a series of species concentration measurements under various laboratory apparatuses

(the training data), one’s objective is to make a prediction for the extent of global warming. In

mathematical terms, the targetE0 has a corresponding modelM0. Any x ∈ F yields a possible

outcome ofE0, namelyM0(x). The analysis objective is to determine the minimum and max-

imum values ofM0 asx takes on values over the feasible setF . These limits are an explicit

manifestation of the assertions, i.e., the training data constraints and uncertainties. The extent

to which all information is effectively and consistently used affects the quality and correctness

of the prediction. It is the difficulty (logistical and mathematical) in solving this general prob-

lem that differentiates among approaches and, as a consequence, dictates different modes of

collaboration.

With this in mind, we consider the following modes:

Mode A, Frozen Core—the extreme of non-collaboration: an individual experiment is an-

alyzed in isolation, with the range of a single (usually most influential) parameter de-

termined by fitting the measurement while having fixed the remaining parameters at the

literature recommended values. This is currently the most typical mode of data process-

ing.

Mode B: Free Core—possibly the best form of non-collaboration: again, analysis is carried

out in isolation, focusing on the most influential parameter. In contrast to Mode A, the

remaining parameters are not “frozen” at specified values but assumed to lie in the unit

hypercube. This mode, as will be shown below, is not of much practical interest. We

devised it solely for the purpose of bridging between Modes A and C, which are not

directly comparable.
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By themselves, Modes A and B are not explicitly aimed at prediction. They focus on parameter

identification, with the presumption that once all model parameters are known precisely, any

prediction using the identified parameters will be accurate.

Mode C: Full Data Collaboration—the extreme of collaboration: The entire knowledge base

for the system is used for prediction.

We considered all three modes. For simplicity, and in light of insufficient records of experimen-

tal uncertainties even for such a well-documented case as GRI-Mech, an artificial but realistic

uniform level of experimental uncertainties,Ui = 0.1, was assumed in all cases tested.

ANALYSIS

Initial Tests

We begin with the Frozen Core scenario, Mode A. For experimenti, we select the parameter

xk, which has the largest impact onMi (see Appendix A), and freeze the rest at their “literature

values”,xj = 0 for j = 1, . . . , 102, j 6= k. In 38 of the 77 cases, it is not possible to find a

solution that fits the experimental observation, i.e., there does not existxk ∈ [−1, 1] such that

Mi([0 . . . 0 xk 0 . . . 0]) = Di. If we allow for uncertainty in the experimental value, then for 5 of

the 77 experiments there does not existxk ∈ [−1, 1] such that|Mi([0 . . . 0 xk 0 . . . 0])−Di| ≤
Ui. With this result, the experimenteri is forced to conclude (in this case incorrectly) that an

error exists in either the model or the data.

Mode A Analysis

Mode A analysis, which is typical in many fields, also can lead to “controversies” among re-

searchers. For instance, based onE66 (GRI-Mech target SCH.C12),x44 (rate constant of re-

action 126, see Appendix A) is reported to lie in the interval [0.38, 1.0]. However, based on

E67 (GRI-Mech target SCH.C13),x44 is reported to lie in the interval [−1.0, 0.22].x44 is the

highest ranking impact parameter for both SCH.C12 and SCH.C13 targets, and it would appear
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(again incorrectly) that these experimental targets are in conflict with each other. We find sim-

ilar inconsistencies affecting 9 of the 102 parameters. Creating collaborations among several

researchers by combining their measurements into a joint analysis yet still within the framework

of the Frozen Core mode does not remove the principal difficulties with this approach.

As it happens, the feasible setF of the GRI-Mech dataset is not empty. The apparent

dilemma arises because, in the interest of “simplifying” the analysis, the Mode A data process-

ing freezes many active parameters. The general problem with parameter freezing is that only

a subset of feasible points are actually considered. As a simple visualization, consider a typical

banana-shaped confidence region [3] as the feasible set,F . A one-dimensional cross-section,

e.g. along a single dimensionxk, comprises only a subset of all feasible points. A collection

of low-dimensional cross-sections may have no points in common, yet, in reality, all belong to

the sameF . The controversies revealed in the Mode A analysis have similar origins, namely

unnecessary (and actually unjustified) overconstraining. Mode A is further complicated by the

fact that each cross section is derived from a different superset,Fi, of F .

Feasible Set Geometry

To visualize further the multi-dimensional geometry of the feasible set, let us continue the exam-

ple discussed above, namely that determination ofx44 from E66 andE67 in separate procedures

(each according to Mode A) gives mutually inconsistent results: the respective ranges [0.38,

1.0] and [−1.0, 0.22] do not overlap. We now expand the analysis of each of the experiments

to two dimensions in optimization variables, by includingx45, the second highest impact pa-

rameter forE67 and the fourth highest forE66 (A127 of reaction CH + H2O→ H + CH2O). The

feasible sets obtained, still under Mode A, are displayed in Fig. 1.

The thick horizontal lines atx45 = 0 in the two panels of Fig. 1, labelled A, designate

the non-overlapping ranges [0.38, 1.0] and [−1.0, 0.22]: the feasible set forx44 determined

solely fromE66 (top panel) and the feasible set forx44 from E67 (bottom panel), respectively.

In other words, withx1 = 0, x2 = 0, . . . , x43 = 0, x45 = 0, . . . , x102 = 0 (i.e., with all rate
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coefficients butk126 frozen at their respective literature values), for any value ofx44 from 0.38 to

1.0 the GRI-Mech 3.0 model prediction forE66 lies within the respective error bounds, within

the intervalD66 ± U66, and for any value ofx44 from −1.0 to 0.22 the prediction forE67 is

within the intervalD67 ± U67.

The total shaded area in each panel of Fig. 1 represents a feasible set determined, again

solely from an individual experiment, but now varying bothx44 andx45 (while keeping the

remaining 100x’s frozen at zero, and hence within Mode A). Thus, for every pair of thex44

andx45 values located within the shaded area of the top panel, GRI-Mech 3.0 prediction forE66

within the intervalD66 ± U66. A similar interpretation applies to the bottom panel. Comparing

the one-dimensional analysis with that extended to two-dimensions, we observe that whereas

the one-dimensional feasible sets (thick horizontal lines atx45 = 0) do not overlap, the two-

dimensional feasible sets do have a common set of points, within the region shaded in darker

grey. In other words, while determination of a single parameter from a single experiment led

to an apparent “controversy” (as if the two results disagree with each other), adding just one

more active parameter into consideration resolves it by finding a “mutually agreeable” set of

acceptable values. Including more active parameters expands the feasible set.

To illustrate the difference among the Modes A, B, and C of analysis, imagine now that the

entire dataset is comprised of just one measurement,E66, and the modelM66(x) has only two

active parameters,x44 andx45. The results for this case are depicted in the top panel of Fig. 1.

Determination ofx44 by matchingM66(x44, x45) to D66 while keepingx45 = 0 constitutes,

as before, the Mode A analysis. The thick solid line atx45 = 0 (labelled A) represents the

corresponding feasible set: all values ofx44 that assure the model predictionM66(x44, x45 = 0)

to lie within intervalD66±U66. Allowing bothx44 andx45 to vary while matchingM66(x44, x45)

to D66 constitutes the Mode C, and the entire shaded area represents the corresponding feasible

set: all points (x44, x45) for whichM66(x44, x45) lies within intervalD66±U66. By comparison,

Mode B has as its goal determination of onlyx44, by matchingM66(x44, x45) to D66, while

allowingx45 to be within its uncertainty range, [−1, +1]. This results in the interval labelled B,
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obtained by the projection of the entire shaded area onto thex44 axis. The outcome of Mode B,

reported asx44 belonging to interval B andx45 to interval [−1, +1], implies a rectangular area

circumscribing the entire shaded area, thus overpredicting the true feasible region. In another

example of a one-experiment dataset, withE67, the Mode B analysis results in no reduction of

the initial uncertainty at all (bottom panel of Fig. 1).

Imagine further that the above examples signify data analysis performed by two researchers,

each individually, one on experimentE66 and the other on experimentE67. Both researcher

would report the same intervals forx45 but differing intervals forx44. By comparison, the

two researchers could combine their measurements forming a single dataset, comprised of two

experimentsE66 andE67 and the model with two active parametersM66(x44, x45). The Mode

C feasible set in this case is designated as the darker shaded area in both panels of Fig. 1,

which contains all points (x44, x45) for which M66(x44, x45) lies within intervalD66 ± U66 and

M67(x44, x45) within intervalD67 ± U67.

Our next dataset example, which is still accessible to graphical visualization, is obtained by

expanding the combined dataset to include an additional active parameter,x34, representingA97

of reaction OH + CH3 → CH2(S) + H2O, the second highest impact parameter forE66 and the

fourth highest forE67. The feasible set obtained in the Mode C analysis is shown in Fig. 2. A

cross-section of this feasible set by the planex34 = 0 forms the darker shaded area in Fig. 1.

With the addition of experiments and active variables, the geometry of the feasible set grows

in complexity and is difficult to visualize. This necessitates developing numerical measures, as

presented next.

Modes B and C Analysis

By their nature, Modes B and C eliminate artificial controversies, as no feasible points are ruled

out. In Mode B, the intersection of all derived parameter intervals results in a hyperparallelo-

gram,Ĥ ⊆ H, and the analysis insures thatĤ contains the feasible set,F ⊆ Ĥ. This allows us
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to express a range of prediction,Rposterior, as

Rposterior = [min
x∈Ĥ

M0(x) max
x∈Ĥ

M0(x)].

We use the subscriptposteriorto distinguish this estimate from the one obtained without con-

strainingx to the feasible region, as will be discussed later. Mode C, Full Data Collaboration,

is naturally expressed in the same mathematical form, yet now using the information implied

by the reported experimentsall at once. This replaces the constraintx ∈ Ĥ with x ∈ F ,

Rposterior = [min
x∈F

M0(x) max
x∈F

M0(x)].

SinceF is a subset of̂H, this guarantees tighter predictions than Mode B.

To determine the posterior predictions, the constrained minima and maxima are computed

by bounding each quantity from above and below. EvaluatingM0(x) at any feasiblex yields

a lower bound on the maximum and an upper bound on the minimum, calledinner bounds,

and they can be improved with local search. Upper bounds on the maximum and lower bounds

on the minimum yieldouter boundsof the predicted range. Outer bounds are hard limits on

the value of the objective function over the feasible set. Obtaining them, in principle, requires

considering every point of the feasible set. In the context of computational complexity theory

[7], for general functions and constraints, this task is difficult. Even deciding that the minimum

of an indefinite quadratic function subject to box constraints (eachxi lies in [0 1]) is greater

than a given fixed number is known to be a “hard” (NP-complete) problem [8, 9]. In more

descriptive terms, an NP-complete problem has two characteristics: no algorithm is known to

solve all problems of this type efficiently [and algorithm is efficient if the computation time

scales as O(np), wheren is the problem’s “size”]; and it is unlikely that such an algorithm

exists, as if it were to exist for one problem of this type, it would be immediately transformable

to all other such problems (the NP-complete class of problems).

NP-completeness, however, does not rule out the existence of good algorithms which work

well on some specific instances of a problem. Our present study is an example of such a case.
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Analysis methods in Robust Control (RC) offer practical outer bound computational schemes

for the problem we consider—minimization of quadratic functions subject to quadratic inequal-

ity constraints. These only yield outer bounds, and on any given problem the computed bound

may be far below the true minimum. When coupled with the inner bound, a concrete (if not

tight) statement about the value of the constrained optimum may be made.

In the present formulation, it is the surrogate response models that play the role of con-

straints, and the fact that these models are quadratic functions lends naturally to the employment

of the RC techniques. In all calculations that follow, we computed both inner and outer bounds.

In each case, the inner and outer bounds were within a few percent of each other, indicating

close approximation to the actual range. Results quoted refer to outer bounds.

The general ideas of the RC algorithms that we use are briefly outlined in Appendix B.

We remark that while the proposed methodology yields a new approach to analysis of dynamic

models, neither the RC algorithms nor the development of surrogate models through Solution

Mapping are new or unique. Rather, our approach casts the prediction problem as a constrained

optimization, drawn on the entire knowledge base available on the system of interest. Our com-

bined RC-SM technique is just one possible method of approaching the optimization problem.

The principal conclusion of the present study should not change if other numerical methods

are employed for this purpose. At the present time, however, we are unaware of methods

comparable in computational efficiency (see below) to our approach, or that the problem we

pose—assessment of Modes B and C—has been addressed in a numerically rigorous manner.

To make the analysis of Modes B and C more general, we chose an arbitrary polynomial

form for M0, with qualitative features similar to a typical experiment of the GRI-Mech dataset:

a quadratic function that depends on the 20 active parameters which occur most frequently in

the GRI-Mech dataset. The norms of the linear and quadratic terms of these functions were

scaled to be equal to the average values of the linear and quadratic terms of the GRI-Mech

surrogate models. For each case, we generated 100 random targets.

To compare effectiveness of Modes B and C, we introduce a measure of information gained
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as a result of the data processing in these modes,

I := 1− ∆Rposterior

∆Rprior

,

where∆R is the length of an intervalR. This definition characterizes the information gainI as

a relative decrease in the predicted range of modelM0. Prior to data processing the variations

of x’s are confined to the initial hypercubeH, andRprior is the range of model prediction onH,

Rprior = [min
x∈H

M0(x) max
x∈H

M0(x)]

If processing the data results in no reduction in the predicted range, i.e.,∆Rposterior = ∆Rprior,

we have gained no information andI = 0. In the other limit, when the obtained outer bounds

coincide with the inner bounds exactly, the value of∆Rposterior is the true range andI attains its

maximum value, for the given experimental targetE0 and the imposed constraints of the dataset.

The extreme case ofI = 1 corresponds to∆Rposterior = 0, implying the model prediction is

exact.

The frequency ofI is displayed in the left panels of Fig. 3. The Mode B (top) resulted

in a rather small information gain, with an average value ofIB = 0.02. Applied to the same

data, the full-data-collaboration mode (Mode C, bottom) resulted inIC = 0.27, an order of

magnitude increase from Mode B. The improvement from Mode B to C is due to the fact that

Ĥ is usually a crude approximation ofF and many regions of̂H are inconsistent with at least

one experiment. The essence of this numerical exercise is precisely our main point: combining

the entire collection of data into a joint analysis extracts substantially more of the information

content of the data.

Computational Efficiency

The computational efficiency of our analysis is also noteworthy. For instance, it took about 100

minutes on a 1.4 GHz Pentium III processor to compute the data displayed in the bottom left

panel of Fig. 1. This translates into roughly 1 min for two inner and two outer bounds with a

system of 102 variables and 77 experimental dataset units.
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Other Dataset Examples

We repeated the analysis on other data sets. Taking one of the GRI-Mech experiments asE0

with the remaining 76 forming the training/assertion set, we obtained, as an average over the

77 such tests,IB = 0.06 and IC = 0.48. These larger values ofIB and IC signify that a

prediction for a target similar to the GRI-Mech dataset is more informative than for an arbitrary

target. While this conclusion is rather trivial, the ability to arrive at it in a systematic way with

rigorously-quantifiable measures is not.

To test further, we created a “toy” training set, mimicking the GRI-Mech dimensions but

with linear surrogate models,Mk =
∑102

i=1 akixi, k = 1, . . . , 77. The coefficientsaki were

selected randomly, with the singular values of the[aki] matrix equal to those of the linear part

of the GRI-Mech surrogate models. Performing the Mode B and C analysis with the toy dataset

resulted inI
toy
B = 0.00 (Fig. 3, top right) andI

toy
C = 0.20 (Fig. 3, bottom right). The outcome

is very similar to the GRI-Mech cases. This demonstrates that the reason for the improvement

from B to C is not necessarily the nonlinearity of the individual modelsMi, but the correlation

of model parameters implicitly revealed by simultaneously considering all of the constraints.

CONCLUSIONS

The GRI-Mech project fosters the paradigm of collaborative data processing for large-scale,

distributed scientific research. The present analysis provides evidence, demonstrated on rigor-

ous mathematical grounds, of the usefulness of this approach. One of the key features of the

present analysis is the distinction between the loosely defined, colloquial meaning of scientific

collaboration and the termcollaboration of dataintroduced here. Our numerical results show

that an essential element of scientific collaboration is collaboration of data, demonstrating that

combining the entire collection of data into a joint analysis extracts substantially more of the

information content of the data.

In no case of collaborative data processing of the GRI-Mech dataset at theUi = 0.1 level of
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uncertainty with Modes B and C did we see inconsistencies that plagued Mode A. Qualitatively

similar results were obtained at uncertainty levels aboveUi = 0.08. Below this level, our

analysis detected that the feasible setF is empty, indicating that the 77 assertions, coupled with

the a priori knowledge, are inconsistent atUi < 0.08. The numerical approach proposed here

offers further analysis for such situations, and we will pursue this direction in a future study.

The mode of data processing portrayed by Mode A is not uncommon. On the contrary,

variants of Mode A are for the most part the currentmodus operandi, certainly in scientific fields

where the progress is built on integration of large amounts of data with the goal of producing

accurate forecast; examples may include chemical model building in combustion, atmospheric

pollutants, astrophysics, and material synthesis. In fact, our choice of natural gas combustion

chemistry for the present work was motivated by the advanced state of science in combustion

chemistry, where enough is known to define an ODE model and the parameter uncertainties are

confined to relatively small ranges yet are substantial enough to impede further progress.

While the present results were obtained with a particular system, drawn from combustion

chemistry, we see no principal limitations in either the approach or implications for other scien-

tific fields, such as atmospheric chemistry, material synthesis, astrophysics, and biology. Also,

active parameters are not limited to rate constants but can be the initial and boundary conditions,

thermodynamic or molecular properties, and the like. The logistics enabling the full collabora-

tion of data we advocate can be addressed by the rapidly developing technology of informatics.

APPENDIX A: GRI-MECH DATASET

The purpose of this Appendix is to help the Reader in relating to mathematical definitions of

data analysis used in the present study. The more formal language of the main text is designed

to address a general situation in a rigorous way, not just chemical kinetics of natural gas com-

bustion. In what follows, we address specifically the GRI-Mech 3.0 release [2].

We define adatasetas a collection of dataset units. Adataset unitis a numerical summary
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of an experiment (E): the measured value (DE), its uncertainly (UE), and the chemical kinetics

model (ME) that is presumably capable of predicting the measurementDE. The underlying

presumption, and hence the principle on which premises the dataset is organized, is that asingle

chemical kinetics model is capable, on physical grounds, of predicting all experimental values

of the dataset. For instance, the present GRI-Mech dataset is built on 77 experiments (E =

1, 2, . . . , 77). Having said that, however, the meanings we assign to “experiment” and “model”

need to be qualified further.

The objective of the GRI-Mech project was to develop a “single mechanism” for natural gas

combustion. The starting point, as typical for chemical kinetics, was a set of chemical reactions

with initially assigned literature rate coefficients. It is a common experience, though, that a

model composed from the “best literature values” does not predict equally wellall experimental

data available. The question, and this is the “heart” of the present paper, is how one goes about

“tuning” the model parameters (say, reaction rate coefficients). In the GRI-Mech 3.0 release, 77

experimental targets were chosen to serve as atraining set, i.e., the model was required to fit (or

to betrained on) a set of 77 targets. These targets were comprised of species concentrations,

ignition delays, flame velocities, shifts in peak positions, etc. Some of these targets were the

actual measurements while others were averages of a group or series of measurements. In the

context of the present discussion, an experimentE, and hence a dataset unitE, is one of these

experimental targets, its value being the measured outcomeDE and its uncertaintyUE.

Qualitatively, the model of a dataset unit can be thought of as the “single chemical kinetic

mechanism” (such as the 325-reaction set of GRI-Mech 3.0): for the experimental conditions

of experimentE it produces a prediction matchingDE. A “direct” numerical implementation

would require solving a set of ordinary differential equations, which for model optimization and

error propagation presents challenging and often unsurmountable numerical and algorithmic

difficulties. In another approach, called Solution Mapping [3], one can express the relationships

between the model input and model output in a parameterized form, referred to as asurrogate

model. Each dataset unitE has such a surrogate model,ME.
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Let us for a moment think ofME as a solution of the single ODE kinetic model at con-

ditions of experimentE. In the context of tuning model parameters through optimization, the

initial conditions of ODE integration for a dataset unitE are fixed (to those of experimentE).

The only changes occurring from run to run are those in the values of optimization variables

(such as pre-exponential factors of rate coefficients, ratios of rate coefficients, and enthalpies of

formation). GRI-Mech dataset has 102 optimization variables,x1, x2, . . . , x102. Only a small

fraction of these isactiveat conditions of experimentE, i.e., has a measurable influence on the

measured outcomeDE. Hence, our notationME(x) implies a surrogate model of dataset unit

E, a function of a set of optimization variablesx active at conditions of experimentE.

In the present study we expressed optimization variables in a normalized and centered form,

essentially keeping them as factorial variables. For instance,

x44 =
ln (A126/A126,0)

ln s126

is an optimization variable associated with reaction (numbered 126 in the GRI-Mech 3.0 dataset)

CH + H2 −→ H + CH2

whereA126 is the pre-exponential factor of the reaction rate coefficientk126, A126,0 its initial

value taken from literature, ands126 the span of variation inA126, thus implying variation of

A126 from A126,0 × s126 to A126,0/s126. Expressed in this way, the optimization variablex44

varies from−1 to +1 and equals 0 at the center of this variation interval, i.e., at the literature

recommendation for the associated rate coefficient. Defined in this manner, all optimization

variables form a 102-dimensional hypercube,H, with each side ranging from−1 to +1, and its

center (xi = 0, i = 1, 2, . . . , 102) corresponding to the initial set, i.e., the “literature recommen-

dation”.

Defined in the normalized and centered way, the factorial representation of optimization

variables in surrogate functions has an additional implication. Whereas a derivative

SA =
∂ ln [CH]max

∂ ln A126
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provides a sensitivity of the CH peak concentration (the response of the SCH.C12 target) with

respect to the actual parameterA126 [3], derivative

Sx =
∂y66

∂x44

specifies animpactof A126 on the response ofE66 (y66 = ln [CH]max). The parameter impact on

a response is defined as|sensitivity × uncertainty|, which in essence “scales” the sensitivity

by the range of (allowed) variation in the parameter value,Sx = SA × ln s.

APPENDIX B: SOS OPTIMIZATION AND S-PROCEDURE

One of the key methodologies in Robust Control is thesum of squares(SOS) method of op-

timization [10, 11]. It exploits the polynomial nature of the constraints and objective. For

instance, determination of the upper bound of the Mode C posterior range,maxx∈F M0(x),

can be expressed as a set containment question: Givenγ, do the constraintsx ∈ H and

{−Ui ≤ Mi(x)−Di ≤ Ui}77
i=1 imply that M0(x) ≤ γ? To answer this question, we define

the sublevel set for a polynomialp of n real variables,Lp := {x ∈ Rn : p(x) ≤ 0}, and pose

the following question for an arbitrary set of polynomials: Given polynomialsp0, p1, . . . , pN , is
⋂N

l=1 Lpl
⊆ Lp0? If there exist globally nonnegative polynomialsλl such that−p0 +

∑N
l=1 λlpl

is globally nonnegative then containment
⋂N

l=1 Lpl
⊆ Lp0 holds; indeed,p0 is nonpositive wher-

ever all of thepl are nonpositive.

In general, checking global nonnegativity of a polynomial is computationally complex [12],

unless the polynomial is SOS, i.e., expressed as a sum of squares of other polynomials,
∑

i f
2
i .

Determining whether a polynomial is SOS is accomplished within the optimization framework

of Semidefinite Programming (SDP) [13, 14]. Our problem is reduced then to the manageable

task of finding SOSλl such that−p0 +
∑N

l=1 λlpl is SOS, and again is decided with SDP. If

all pl are quadratic functions and allλl are restricted to be nonnegative constants, the sufficient

condition that−p0 +
∑N

l=1 λlpl be a positive semidefinite quadratic function is known as “theS
procedure” [10]. Given the quadratic form of the GRI-Mech surrogate models,Mi, we used the
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S procedure to determine outer bounds.

A more detailed account of the numerical procedure and optimization is given in [15].
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FIGURE CAPTIONS

Fig. 1 Feasible sets obtained in analysis of Experiments 66 (top panel) and 67 (bottom panel)

individually, with all x’s butx44 andx45 set to 0 (see text).

Fig. 2 A feasible set obtained in a joint analysis of Experiments 66 and 67, with allx’s but

x44, x45, andx34 set to 0.

Fig. 3 Frequency of information gain,I, for the Free-Core (Case B, top panels) and Full-

Collaboration (Case C, bottom panels) modes of data processing on the GRI-Mech (left

panels) and Toy (right panels) datasets.
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Figure 1: Feasible sets obtained in analysis of Experiments 66 (top panel) and 67 (bottom panel)
individually, with all x’s butx44 andx45 set to 0 (see text).
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Figure 2: A feasible set obtained in a joint analysis of Experiments 66 and 67, with allx’s but
x44, x45, andx34 set to 0.
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Figure 3: Frequency of information gain,I, for the Free-Core (Case B, top panels) and Full-
Collaboration (Case C, bottom panels) modes of data processing on the GRI-Mech (left panels)
and Toy (right panels) datasets.
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