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Summary. We consider nonlinear systems with polynomial vector fields and pose
two classes of system theoretic problems that may be solved by sum of squares pro-
gramming. The first is disturbance analysis using three different norms to bound
the reachable set. The second is the synthesis of a polynomial state feedback con-
troller to enlarge the provable region of attraction. We also outline a variant of the
state feedback synthesis for handling systems with input saturation. Both classes of
problems are demonstrated using two-state nonlinear systems.

1 Introduction

Recent developments in sum of squares (SOS) programming [1, 2] have greatly
extended the class of problems that can be solved with convex optimization.
These results provide a general methodology to find formulations or relax-
ations, solvable by semidefinite programming, which address seemingly in-
tractable nonconvex problems. Many of the problems that are amenable to
SOS programming relate to polynomial optimization or algebraic geometry
and reach back to the original work on global lower bounds for polynomials.
This work is collected and expanded upon in [3].

First, we define the basic tools needed to state the main theorem, the
Positivstellensatz, which leads to the development of our results. We use this
methodology to pose two classes of system theoretic problems for nonlinear
systems with polynomial vector fields. The first class of problems is distur-
bance analysis, which we will show three different ways of quantifying the
effects of disturbances on polynomial systems:

1. bounding the reachable set subject to unit energy disturbance,
2. bounding the peak bounded disturbance that retains set invariance, and
3. bounding the induced L2 → L2 gain.

The second class of problems is expanding a region of attraction with state
feedback, and its variant for systems with input saturation. We will illustrate
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our methods of solving these problems by presenting two proof of concept
numerical examples. The two classes of problems presented here is a selection
of work done in [4] and [5].

2 Preliminaries

We often use the same letter to denote a signal (i.e. a function of time), as
well as the possible values that the signal may take on at any time. We hope
this abuse of notation will not confuse the reader.

2.1 Polynomial Definitions

Definition 1 (Monomials). A Monomial mα in n variables is a function
defined as mα(x) = xα := xα1

1 xα2

2 · · ·xαn

n for α ∈ Z
n
+. The degree of a mono-

mial is defined, deg mα :=
∑n

i=1 αi.

Definition 2 (Polynomials). A Polynomial f in n variables is a finite
linear combination of monomials,

f :=
∑

α

cαmα =
∑

α

cαxα

with cα ∈ R. Define Rn to be the set of all polynomials in n variables. The
degree of f is defined as deg f := maxα deg mα (provided the associated cα is
non-zero).

Additionally we define Σn to be the set of sum of squares (SOS) polyno-
mials in n variables.

Σn :=

{

p ∈ Rn

∣

∣

∣

∣

∣

p =

t
∑

i=1

f2
i , fi ∈ Rn, i = 1, . . . , t

}

.

Obviously if p ∈ Σn, then p(x) ≥ 0 ∀x ∈ R
n.

It is interesting to note that there are polynomials that are positive
semidefinite (PSD) that are not sum of squares. In general, there are only
three combinations of number of variables and degree such that the set of
SOS polynomials is equivalent to the set of positive semidefinite ones, namely,
n = 2; d = 2; and n = 3 with d = 4. This result dates to Hilbert and is related
to his 17th problem.

2.2 Positivstellensatz

In the section we define concepts to state a central theorem from real algebraic
geometry, the Positivstellensatz, which we will hereafter refer to as the P-satz.
This is a powerful theorem which generalizes many known results. For exam-
ple, applying the P-satz, it is possible to derive the S-procedure by carefully
picking the free parameters, as will be shown in Sect. 2.4.
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Definition 3. Given {g1, . . . , gt} ∈ Rn, the Multiplicative Monoid gener-
ated by gj’s is the set of all finite products of gj’s, including 1 (i.e. the empty
product). It is denoted as M(g1, . . . , gt). For completeness define M(φ) := 1.

An example: M(g1, g2) = {gk1

1 gk2

2 | k1, k2 ∈ Z+}.
Definition 4. Given {f1, . . . , fr} ∈ Rn, the Cone generated by fi’s is

P(f1, . . . , fr) :=

{

s0 +

l
∑

i=1

sibi

∣

∣

∣

∣

∣

l ∈ Z+, si ∈ Σn, bi ∈ M(f1, . . . , fr)

}

. (1)

Note that if s ∈ Σn and f ∈ Rn, then f2s ∈ Σn as well. This allows us to
express a cone of {f1, . . . , fr} as a sum of 2r terms. An example: P(f1, f2) =
{s0 + s1f1 + s2f2 + s3f1f2 | s0, . . . , s3 ∈ Σn}.
Definition 5. Given {h1, . . . , hu} ∈ Rn, the Ideal generated by hk’s is

I(h1, . . . , hu) :=

{

u
∑

k=1

hkpk

∣

∣

∣

∣

∣

pk ∈ Rn

}

.

With these definitions we can state the following theorem taken from [6, The-
orem 4.2.2]

Theorem 1 (Positivstellensatz). Given polynomials {f1, . . . , fr},
{g1, . . . , gt}, and {h1, . . . , hu} in Rn, the following are equivalent:

1. The set






x ∈ R
n

∣

∣

∣

∣

∣

∣

f1(x) ≥ 0, . . . , fr(x) ≥ 0
g1(x) 6= 0, . . . , gt(x) 6= 0
h1(x) = 0, . . . , hu(x) = 0







is empty.
2. There exist polynomials f ∈ P(f1, . . . , fr), g ∈ M(g1, . . . , gt),

h ∈ I(h1, . . . , hu) such that

f + g2 + h = 0 .

When there are only inequality constraints, and they describe a compact re-
gion, this theorem can be improved to reduce the number of free parameters
[7], and with slightly stronger assumptions [8]. These results have been used to
improve bounds on nonconvex polynomial optimization [2] and [9] highlighted
a software package to do so.

2.3 SOS Programming

Sum of squares polynomials play an important role in the P-satz. Using a
“Gram matrix” approach, Choi et al. [10] showed that p ∈ Σn iff ∃ Q � 0
such that p(x) = z∗(x)Qz(x), with z(x) a vector of suitable monomials. Powers
and Wörmann [11] proposed an algorithm to check if any Q � 0 exists for a
given p ∈ Rn. Parrilo [1] showed that their algorithm is an LMI, and proved
the following extension.
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Theorem 2 (Parrilo). Given a finite set {pi}m
i=0 ∈ Rn, the existence of

{ai}m
i=1 ∈ R such that

p0 +

m
∑

i=1

aipi ∈ Σn

is an LMI feasibility problem.

This theorem is useful since it allows one to answer questions like the following
SOS programming example.

Example 1. Given p0, p1 ∈ Rn, does there exist a k ∈ Rn, of a given degree,
such that

p0 + kp1 ∈ Σn . (2)

To answer this question, write k as a linear combination of its monomials
{mj}, k =

∑s
j=1 ajmj . Rewrite (2) using this decomposition

p0 + kp1 = p0 +
s

∑

j=1

aj(mjp1)

which since (mjp1) ∈ Rn is a feasibility problem that can be checked by
Theorem 2.

A software package, SOSTOOLS, [12, 13], exists to aid in solving the LMIs
that result from Theorem 2. This package as well as [9] use Sturm’s SeDuMi
semidefinite programming solver [14].

2.4 S-Procedure

What does the S-procedure look like in the P-satz formalism? Given symmet-
ric n×n matrices {Ak}m

k=0, the S-procedure states: if there exist nonnegative
scalars {λk}m

k=1 such that A0 −
∑m

k=1 λkAk � 0, then

m
⋂

k=1

{

x ∈ R
n | xT Akx ≥ 0

}

⊆
{

x ∈ R
n | xT A0x ≥ 0

}

.

Written in P-satz form, the question becomes “is

{

x ∈ R
n

∣

∣

∣

∣

∣

xT A1x ≥ 0, . . . , xT Amx ≥ 0,

−xT A0x ≥ 0, xT A0x 6= 0

}

empty?” Certainly, if the λk exist, define 0 � Q := A0 −
∑m

k=1 λkAk. Further
define SOS functions s0(x) := xT Qx, s01 := λ1, . . . , s0m := λm. Note that

f := (−xT A0x)s0 +
∑m

k=1(−xT A0x)(xT Akx)s0k

∈ P
(

xT A1x, . . . , xT Amx,−xT A0x
)
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and that g := xT A0x ∈ M(xT A0x). Substitution yields f +g2 = 0 as desired.
We will use this insight to make specific selections in the P-satz formulation
of in Sects. 3 and 4. For the special case of m = 1, the converse of the S-
Procedure is also true [15, Sect. 2.6.3].

Using the tools of SOS programming and the P-satz, we can, after some
simplifications, cast some control problems for systems with polynomial vector
fields as tractable optimization problems. In the next two sections, we discuss
two classes of problems that these techniques are applicable to.

3 Disturbance Analysis

In this section, we consider the local effects of external disturbances on poly-
nomial systems. The following types of disturbance analysis are considered:

1. Reachable set bounds under unit energy disturbances
2. Set invariance under peak bounded disturbances
3. Bounding the induced L2 → L2 gain

3.1 Reachable Set Bounds under Unit Energy Disturbances

Given a system of the form

ẋ = f(x) + gw(x)w (3)

with x(t) ∈ R
n, w(t) ∈ R

nw , f ∈ Rn
n, f(0) = 0, and gw ∈ Rn×nw

n . We want to
compute a bound on the set of points x(T ) that are reachable from x(0) = 0

under (3), provided the disturbance satisfies
∫ T

0
w(t)∗w(t) dt ≤ 1, T ≥ 0.

A similar problem is considered in [16], where real quantifier elimination
is used to calculate the exact reachable set for a larger class of dynamical
systems. Our approach only considers convex relaxations of the exact problem,
and as such requires less computation. A comparison of SOS programming and
computational algebra is given in [17] for the case of polynomial minimization.

Following the Lyapunov-like argument in [15, Sect. 6.1.1], if we have a
polynomial V such that

V (x) > 0 for all x ∈ R
n\{0} with V (0) = 0 , and (4)

∂V

∂x
(f(x) + gw(x)w) ≤ w∗w for all x ∈ R

n, w ∈ R
nw , (5)

then {x|V (x) ≤ 1} contains the set of points x(T ) that are reachable from

x(0) = 0 for any w such that
∫ T

0
w(t)∗w(t) dt ≤ 1, T ≥ 0. We can see this by

integrating the inequality in (5) from 0 to T , yielding

V (x(T )) − V (x(0)) =

∫ T

0

w(t)∗w(t) dt ≤ 1 .
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Recalling V (x(0)) = 0, x(T ) ∈ {x|V (x) ≤ 1}. Furthermore, x(τ) ∈ {x|V (x) ≤
1} for all τ ∈ [0, T ], allowing us to relax the inequality in (5) to

∂V

∂x
(f(x) + gw(x)w) ≤ w∗w ∀x ∈ {x |V (x) ≤ 1}, ∀w ∈ R

nw .

To bound the reachable set, we require a V satisfying these conditions.
Additionally, to achieve a useful bound, the level set {x|V (x) ≤ 1} should
be as small as possible. This is accomplished by requiring {x|V (x) ≤ 1} to
be contained in a variable sized region Pβ := {x ∈ R

n|p(x) ≤ β}, for some
positive definite p, and minimizing β under the constraint that we can find a
V satisfying (4) and (5). Restricting V to be a polynomial with no constant
term, so that V (0) = 0, we formulate the problem in the following way, leading
to application of the P-satz.

min
V ∈Rn

β

such that

{x ∈ R
n | V (x) ≤ 0, l1(x) 6= 0} is empty , (6)

{x ∈ R
n | V (x) ≤ 1, p(x) ≥ β, p(x) 6= β} is empty , (7)















x ∈ R
n ,

w ∈ R
nw

∣

∣

∣

∣

∣

∣

∣

∣

V (x) ≤ 1,
∂V
∂x

(f(x) + gw(x)w) ≥ w∗w,
∂V
∂x

(f(x) + gw(x)w) 6= w∗w















is empty . (8)

where l1 is some positive definite and SOS polynomial that replaces x in the
non-polynomial constraint x 6= 0. The constraints (6) and (8) make V and V̇
behave properly, while (7) allows that {x|V (x) ≤ 1} ⊆ Pβ .

Invoking the P-satz, constraints (6)–(8) are equivalent to the constraints
in the following minimization.

min β over
V ∈ Rn , s1, . . . , s6 ∈ Σn

s7, . . . , s10 ∈ Σn+nw
, k1, k2, k3 ∈ Z+

such that

s1 − V s2 + l2k1

1 = 0 , (9)

s3 + (1 − V )s4 + (p − β)s5 ,

+ (1 − V )(p − β)s6 + (p − β)2k2 = 0 , (10)

s7 +

(

∂V

∂x
(f(x) + gw(x)w) − w∗w

)

s8 + (1 − V )s9

+ (1 − V )

(

∂V

∂x
(f(x) + gw(x)w) − w∗w

)

s10 ,

+

(

∂V

∂x
(f(x) + gw(x)w) − w∗w

)2k3

= 0 . (11)
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Conditions (9)–(11) cannot be directly checked using SOS programming
methods. Therefore we specify convenient values for some of the si’s and kj ’s.
We also restrict the degree of V and the remaining si’s. Consequently (9)–(11)
become only sufficient for (6)–(8).

Picking any of the kj = 0, can prevent feasibility. Thus we set all of the kj ’s
equal to the next smallest value, 1. If we pick s2 = l1 and s1 = ŝ1l1, then (9)
looks like the form used to show positive definiteness of a Lyapunov function
in [18]. Additionally, if we pick s7 = s9 = 0, and realize that ∂V

∂x
(f(x) +

gw(x)w) − w∗w is not the zero polynomial, we can write (11) in the form of
a “generalized” S-procedure. These choices leave the following problem:

min β over V ∈ Rn, s4, s5, s6 ∈ Σn, s10 ∈ Σn+nw

such that

V − l1 ∈ Σn , (12)

−
(

(1 − V )s4 + (p − β)s5

+ (1 − V )(p − β)s6 + (p − β)2
)

∈ Σn , (13)

−
(

(1 − V )s10 +

(

∂V

∂x
(f(x) + gw(x)w) − w∗w

))

∈ Σn+nw
. (14)

where (12) ensures the positive definiteness of V , (13) establishes {x|V (x) ≤
1} ⊆ Pβ , and (14) constrains V̇ ≤ w∗w on {x|V (x) ≤ 1}.

Note that some of the decision polynomials enter the constraints in a
bilinear form, which SOS programming cannot handle directly. For example,
in (13), there are bilinear terms such as V s4 and V s6. Our approach is to
hold one set of decision polynomials fixed while optimizing the other set, then
switching over. This results in an iterative algorithm whereby at any step, the
constraints (12)–(14) can be checked using SOS programming.

Before presenting the algorithm, two issues deserve mention. First, to use
SOS programming, we must specify the maximum degree of V and the SOS
polynomials si. To ensure (12)–(14) might be satisfied, the degree of the poly-
nomials must satisfy

deg V = deg l1 ,

max{deg(V s4); deg(V ps6)} ≥ max{deg(ps5); 2 deg p} ,

deg s10 ≥ max{deg f ; deg(gww)} − 1 .

(15)

These constraints are a consequence of the nature of polynomials; e.g. a SOS
polynomial of degree 2 cannot be greater than a SOS polynomial of degree 4
for all x.

The second issue is that the algorithm does not reliably find a feasible
point {V, s4, s5, s6, s10, β}. Rather it can only improve upon one, by driving
β smaller. As written, the user must supply an initial V0 that is a component
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of some feasible point, though the other components can be determined with
SDPs. Given a V0 satisfying (12), an SDP can determine the existence of s4,
s5, and s6 to satisfy (13). Likewise, a separate SDP can determine the exis-
tence of s10 satisfying (14). Note that a “poor” choice of initial V0 may render
(13) and/or (14) unsatisfiable for any choice of β, s4, s5, s6, s10, although for
a different V0, (13) and (14) may be satisfied. Heuristics (based on lineariza-
tions) to find suitable initial V0’s are possible. However, once a feasible point
{V, s4, s5, s6, s10, β} is found, the optimization will remain feasible and β will
be at least monotonically non-increasing with every step of the algorithm.
Since we do not have a lower bound on β, we do not have a formal stop-
ping criteria. Heuristics, such as β between each iteration of the algorithm
improving by less than a specified tolerance, is used as our stopping criterion.

Iterative Bounding Procedure
Setup: Specify the maximum degree that will be considered for both V and
the si’s, observing the constraints in (15). Set l1 = ε

∑

xm
i for some small

ε > 0, and m is the maximum degree of V . Each step of the iteration,
which is indexed by i, consists of three substeps, the first two subject
to constraints (12)–(14). To begin the iteration, choose a V0, initialize
V (i=0) = V0 and the iteration index i = 1, and proceed to step 1.

1. SOS Optimization:
Minimize β over s4, s5, s6, and s10, with V = V (i−1) fixed, to obtain

s
(i)
4 , s

(i)
6 , and s

(i)
10 .

2. Lyapunov Function Synthesis:

Minimize β over s5 and V , with s4 = s
(i)
4 , s6 = s

(i)
6 , and s10 = s

(i)
10

fixed, to obtain V (i) and β(i).
3. Stopping Criterion:

If β(i)−β(i−1) is less than a specified tolerance, conclude the iteration,
otherwise increment i and return to substep 1.

In (13), β is multiplied by polynomials we are searching over. Therefore
we minimize β in substeps 1 and 2 using a line search.

If we restrict ourselves to linear dynamics, ẋ = Ax + Bww, and quadratic
Lyapunov functions, V (x) = x∗Px, then (12) becomes P � 0, and with
s10 = 0, (14) becomes

[

A∗P + PA PBw

B∗
wP −I

]

� 0 .

Thus (12) and (14) generalize the LMI in [15, Sect. 6.1.1].
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3.2 Set Invariance under Peak Bounded Disturbances

Considering again a polynomial system subject to disturbances as in (3),

ẋ = f(x) + gw(x)w .

We can now look at bounding the maximum peak disturbance value such that
a given set remains invariant under these bounded disturbances and the action
of the system’s dynamics.

Let the peak of a signal w be bounded by

‖w‖∞ := sup
t

|w(t)| ≤ √
γ

and define the invariant set as

Ω1 := {x ∈ R
n|V (x) ≤ 1}

for some fixed V ∈ Rn, positive definite. We know that if ∂V
∂x

(f(x)+gw(x)w) ≤
0 on the boundary of Ω1 for all w meeting the peak bound, then the flow of the
system from any point in Ω1 cannot ever leave Ω1, which makes it invariant.
In set containment terms we can write this relationship as

{x ∈ R
n, w ∈ R

nw |V (x) = 1} ∩ {x ∈ R
n, w ∈ R

nw |w∗w ≤ γ}

⊆
{

x ∈ R
n, w ∈ R

nw

∣

∣

∣

∣

∂V

∂x
(f(x) + gw(x)w) ≤ 0

}

(16)

which can be rewritten in set emptiness form as














x ∈ R
n,

w ∈ R
nw

∣

∣

∣

∣

∣

∣

∣

∣

V (x) − 1 = 0, γ − w∗w ≥ 0,
∂V
∂x

(f(x) + gw(x)w) ≥ 0,
∂V
∂x

(f(x) + gw(x)w) 6= 0















= φ

Employing the P-satz, this becomes

s0 + s1(γ − w∗w) + s2
∂V
∂x

(f(x) + gw(x)w)

+ s3(γ − w∗w)∂V
∂x

(f(x) + gw(x)w)

+
(

∂V
∂x

(f(x) + gw(x)w)
)2k

+ q(V − 1) = 0

with k ∈ Z+, q ∈ Rn+nw
and s0, s1, s2, s3 ∈ Σn+nw

.
Using our standard approach of k = 1, we can write the following SOS

constraint that guarantees invariance under bounded w,

− s1(γ − w∗w) − s2
∂V
∂x

(f(x) + gw(x)w)

− s3(γ − w∗w)∂V
∂x

(f(x) + gw(x)w)

−
(

∂V
∂x

(f(x) + gw(x)w)
)2 − q(V − 1) ∈ Σn+nw

. (17)
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Notice that this SOS condition has terms that are not linear in the monomials
of V , and thus there is no way to use our convex optimization approach to
adjust V while checking this condition. Since (17) in linear in γ we can search
for the maximum peak disturbance for which the set is invariant, by searching
over q and the si’s to maximize γ subject to (17). We will need to have the
following degree relationship hold to make (17) possibly feasible

max
{

deg(s1) + 2, deg(s2
∂V
∂x

(f(x) + gw(x)w)), deg(qV )
}

≥ max
{

deg(s3
∂V
∂x

(f(x) + gw(x)w))) + 2, 2 deg(∂V
∂x

(f(x) + gw(x)w)))
}

.

If we set x(0) = 0, then the invariant set Ω1 bounds the system’s reachable
set under disturbances with peak less than γ. This bound is similar, but less
stringent, than the bound for linear systems given in [15].

The constraint in (17) can result in searching for polynomials with many
coefficients. We can reduce the degree of this constraint by setting q =
(

∂V
∂x

(f(x) + gw(x)w)
)2

q̂ and si =
(

∂V
∂x

(f(x) + gw(x)w)
)2

ŝi for i = 1, 2, 3.

This allows us to factor out a
(

∂V
∂x

(f(x) + gw(x)w)
)2

term to get the follow-
ing sufficient condition:

− ŝ1(γ − w∗w) − ŝ2
∂V
∂x

(f(x) + gw(x)w)

−ŝ3(γ − w∗w)∂V
∂x

(f(x) + gw(x)w) − 1 − q̂(V − 1) ∈ Σn+nw
. (18)

For this simplified constraint (18), the polynomials must satisify this degree
relationship:

max
{

deg(ŝ1) + 2, deg(ŝ2
∂V
∂x

(f(x) + gw(x)w)), deg(q̂V )
}

≥ deg
(

ŝ3
∂V
∂x

(f(x) + gw(x)w))
)

+ 2 . (19)

Effect of ‖w‖∞ on ‖x‖∞

Using the bounded peak disturbances techniques above to find a bound for the
largest disturbance peak value for which Ω1 is invariant, we can then bound
the peak size of the system’s state to get a relationship that is similar to the
induced L∞ → L∞ norm from disturbance to state for this invariant set.

For a given V , we solve the optimization to find the largest γ such that
(17) is feasible. Then we can bound the size of the state by optimizing to find
the smallest α such that

Ω1 = {x ∈ R
n | V (x) ≤ 1} ⊆ {x ∈ R

n | x∗x ≤ α}

This containment constraint is easily solved with a generalized S-procedure
following from Sect. 2.4. From this point we know that the following implica-
tion holds

∀x(0) ∈ Ω1 , and ‖w‖∞ ≤ √
γ ⇒ ‖x‖∞ ≤

√
α ,

which provides our induced norm-like bound.
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3.3 Bounding the Induced L2 → L2 Gain

Consider the disturbance driven system with outputs,

ẋ = f(x) + gw(x)w

y = h(x)

with x(t) ∈ R
n, w(t) ∈ R

nw , y(t) ∈ R
p, f ∈ Rn

n, f(0) = 0, gw ∈ Rn×nw

n , and
h ∈ Rp

n with h(0) = 0.
For a region, Ω1 = {x ∈ R

n|V (x) ≤ 1} as in Sect. 3.2, that is invariant
under disturbances with ‖w‖∞ ≤ √

γ, we can bound the induced L2 → L2

gain from w to y on this invariant set by finding a positive definite H ∈ Rn

and β ≥ 0 such that the following set containment holds

{x ∈ R
n, w ∈ R

nw |w∗w ≤ γ} ∩ {x ∈ R
n, w ∈ R

nw |V (x) ≤ 1}
⊆

{

x ∈ R
n, w ∈ R

nw

∣

∣

∂H
∂x

(f(x) + gw(x)w) + h(x)∗h(x) − βw∗w ≤ 0
}

(20)

If we can find a β,H pair to make (20) hold, then we can follow the steps
from Sect. 3.1 to show that

x(0) = 0 and ‖w‖∞ ≤ √
γ ⇒ ‖y‖2

‖w‖2
≤

√

β .

We can search for the tightest bound on the induced norm by employing a
generalized S-procedure to satisfy (20) and solving the following optimization

min
H∈Rn

β s.t.

H − l ∈ Σn , (21)

−
(

∂H
∂x

(f(x) + gw(x)w) + h(x)∗h(x) − βw∗w
)

−s1(γ − w∗w) − s2(1 − V ) ∈ Σn+nw

with s1, s2 ∈ Σn+nw
and l ∈ Σn, positive definite.

In an effort to make the optimization (21) feasible we will pick the degrees
of s1 and s2 so that

deg(s1) + 2 ≥ deg
(

∂H
∂x

(f(x) + gw(x)w) + h∗h
)

and

deg(s2V ) ≥ deg
(

∂H
∂x

(f(x) + gw(x)w) + h∗h
)

.

3.4 Disturbance Analysis Example

Consider the following nonlinear system

ẋ1 = −x1 + x2 − x1x
2
2

ẋ2 = −x2 − x2
1x2 + w

y = [x1 x2]
T (22)
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with x(t) ∈ R
2 and w(t) ∈ R. Given p(x) = 8x2

1 − 8x1x2 + 4x2
2, we would

like to determine the smallest level set Pβ := {x ∈ R
2 | p(x) ≤ β} that con-

tains all possible system trajectories for t ≤ T starting from x(0) = 0 with
∫ T

0
w2 dt ≤ R, where R is a given constant. Employing the algorithm in Sect.

3.1, we fix s5 = 1 and s6 = 0 to eliminate the need for a line search in each
substep. We set the maximum degree of V , s4 and s10 all to be of degree 4
and initialized the algorithm with V0(x) = x2

1 + x2
2. Figure 1 shows the algo-

rithm’s progress in reducing β versus iteration number as well as the trade off
between R and β. The insert shows the monotonically decreasing behavior of
our algorithm for R = 1, and after 10 iterations, β is reduced to 1.08, which is
a large improvement over the first iteration bound of β = 10.79. For increasing
values of disturbance energy R, the size of the reachable set increases, which
is expected.

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

R

β
0 2 4 6 8 10

0

4

8

12

Iteration No.

β

Fig. 1. Insert: Algorithm’s progress for R=1, Main: Trade off between R and β

Using the Lyapunov function V found in the reachable set analysis for
R = 1, we can bound the peak disturbance such that the set Ω1 = {x ∈
R

2 | V (x) ≤ 1} remains invariant. Using the optimization in (18), we get
‖w‖∞ ≤ √

γ = 0.642 by choosing the degree of ŝ1, ŝ2, ŝ3 and p̂ to be 6, 2, 0
and 4 respectively. If we start from x(0) ∈ Ω1 and have ‖w‖∞ ≤ 0.642, then
‖x‖∞ ≤ √

α = 0.784. We can also bound the induced L2 → L2 disturbance to
state gain for this system. The maximum degree of H, s1, and s2 are chosen

to be 2, 0 and 2 respectively. Using (21), we get ‖x‖2

‖w‖2

≤ 1.41 if we start from

x(0) = 0, and as long as ‖w‖∞ ≤ 0.642.
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4 Expanding a Region of Attraction with State Feedback

Given a system of the form

ẋ = f(x) + g(x)u (23)

with x(t) ∈ R
n, u(t) ∈ R, and f, g n-vectors of elements of Rn such that

f(0) = 0, we would like to synthesize a state feedback controller u = K(x)
with K ∈ Rn that enlarges the set of points that we can show are attracted
to the fixed point at the origin.

We define a variable sized region as Pβ := {x ∈ R
n|p(x) ≤ β}, for some

given positive definite p. We then expand the provable region of attraction
by maximizing β while requiring that all of the points in Pβ converge to the
origin under the controller K. Using a Lyapunov argument, every point in Pβ

will converge asymptotically to the origin if there exists K,V ∈ Rn such that
the following hold:

V (x) > 0 for all x ∈ R
n\{0} and V (0) = 0 , (24)

{x ∈ R
n | p(x) ≤ β} ⊆ {x ∈ R

n | V (x) ≤ 1} , (25)

{x ∈ R
n | V (x) ≤ 1}\{0} ⊆

{

x ∈ R
n

∣

∣

∣

∣

∂V

∂x
(f(x) + g(x)K(x)) < 0

}

.
(26)

These conditions show that V is positive definite, Pβ is contained in a level
set of V , and dV

dt
is strictly negative on all the points contained in the level

set aside from x = 0.
The condition that V (0) = 0 is satisfied by setting the constant term to

zero. Enlarging the region of attraction subject to the preceding requirements
can be cast into the following form which is amenable to the P-satz.

max
K,V ∈Rn

β

such that

{x ∈ R
n | V (x) ≤ 0, l1(x) 6= 0} is empty , (27)

{x ∈ R
n | p(x) ≤ β, V (x) ≥ 1, V (x) 6= 1} is empty , (28)







x ∈ R
n

∣

∣

∣

∣

∣

∣

V (x) ≤ 1, l2(x) 6= 0,
∂V
∂x

(

f(x) + g(x)K(x)
)

≥ 0







is empty . (29)

where l1, l2 are fixed positive definite and SOS polynomials which replace the
non-polynomial constraints x 6= 0 in (24) and (26).

Applying the P-satz, the region maximization problem with constraints
(27)–(29) is equivalent to
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max β over
K,V ∈ Rn k1, k2, k3 ∈ Z+

s1, . . . , s10 ∈ Σn

such that

s1 − V s2 + l2k1

1 = 0 , (30)

s3 + (β − p)s4 + (V − 1)s5

+ (β − p)(V − 1)s6 + (V − 1)2k2 = 0 , (31)

s7 + (1 − V )s8 + (
∂V

∂x
(f + gK))s9

+ (1 − V )(
∂V

∂x
(f + gK))s10 + l2k3

2 = 0 . (32)

We cannot check (30)–(32) using SOS programming methods, so we will
have to pick values for some of the si’s and kj ’s. We set k1 = k2 = k3 = 1 and
pick s2 = l1 and s1 = ŝ1l1 to simplify (30). Equation (31) has a (V − 1)2k2

term which we can not directly optimize over using SOS programming, so we
cast this constraint as an S-procedure (see Sect. 2.4). This is done by setting
s3 = s4 = 0, k2 = 1, and factoring out a (V − 1) term. To simplify (32) we
set s10 = 0 and factor out l2, leaving the sufficient conditions below,

max β over K,V ∈ Rn s6, s8, s9 ∈ Σn

such that

V − l1 ∈ Σn , (33)

−
(

(β − p)s6 + (V − 1)
)

∈ Σn , (34)

−
(

(1 − V )s8 +
∂V

∂x
(f + gK)s9 + l2

)

∈ Σn . (35)

Again, the decision polynomials do not enter the constraints linearly, so we
employ an iterative algorithm to solve this maximization. A slight modification
to (35) is needed because for a given Lyapunov candidate function V , searching
over K does not affect β at all. An intermediate variable, α, is introduced to
(35) so that we maximize the level set of {x |V (x) ≤ α} that is contractively
invariant under K and use α to scale V and l2. We will elaborate more in the
control design algorithm.

To initialize the algorithm, set V0 to be a control Lyapunov function (CLF)
of the linearized system. Since V0 is a CLF, (33) is automatically satisfied
and (35) is easily satisfied by scaling V0. Constraint (34) is also satisfied for
sufficiently small β. As such, if we can find a CLF for the linearized system,
we would have a feasible starting point for our algorithm. Otherwise, the
algorithm might fail on the first iteration.

For reasons highlighted in Sect. 3.1, the maximum degree of V , K, l1, l2,
and the si’s must satisfy the following constraints:
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deg V = deg l1 ,

deg(ps6) ≥ deg V ,

deg s8 ≥ max{deg(fs9); deg(gKs9)} − 1 ,

deg(V s8) = deg l2 .

(36)

Control Design Algorithm
Setup: Specify the maximum degree that will be considered for both V
and the si’s. Set l1 = ε

∑

xm
i for some small ε > 0, and m is the maximum

degree of V . Each step of the iteration, indexed by i, consists of three
substeps, two of which also involve iterations. These inner iterations will
be indexed by j. To begin the iteration, choose a V0 that is a CLF of

the linearized system, and initialize V (i=0) = V0 and s
(i=0)
9 = 1. Also, set

l
(i=0)
2 = ε

∑

xq
i , where q is the maximum degree of (V s8). Now set the

outer iteration index i = 1 and proceed to step 1.

1. Controller Synthesis:

Set V = V (i−1), s
(j=0)
9 = s

(i−1)
9 , and the inner iteration index j = 1.

In substeps 1a and 1b, solve the following optimization problem:

max α over K ∈ Rn, s8, s9 ∈ Σn such that

−
(

(α − V )s8 +
∂V

∂x
(f + gK)s9 + l2

)

∈ Σn . (37)

(a) Maximize α over s8, K, with s9 = s
(j−1)
9 fixed, to obtain K(j).

(b) Maximize α over s8, s9, with K = K(j) fixed, to obtain s
(j)
9 and

α(j).
(c) If α(j) − α(j−1) is less than a specified tolerance, set s

(i)
8 = s

(j)
8 ,

s
(i)
9 = s

(j)
9 , l

(i)
2 = l

(i−1)
2 /α(j), and α(i) = α(j) and continue to step

2. Otherwise increment j and return to 1a.
2. Lyapunov Function Synthesis:

Set V (j=0) = V (i−1)/α(i) and the inner iteration index j = 1. Hold

s8 = s
(i)
8 , s9 = s

(i)
9 , and l2 = l

(i)
2 fixed.

(a) Maximize β over s6, with V = V (j−1) fixed, subject to (34) to

obtain s
(j)
6 . i.e.

max β over s6 ∈ Σn such that

−
(

(β − p)s6 + (V − 1)
)

∈ Σn .

(b) Maximize β over V , with s6 = s
(j)
6 fixed, subject to (33)–(35) to

obtain V (j) and β(j).



16 Jarvis-Wloszek et al.

(c) If β(j) − β(j−1) is less than a specified tolerance, set V (i) = V (j)

and β(i) = β(j) and continue to step 3. Otherwise increment j and
return to 2a.

3. Stopping Criterion: If β(i) −β(i−1) is less than a specified tolerance
conclude the iterations, otherwise return to step 1.

As in Sect. 3.1, we use a line search to maximize α and β in the steps
above.

4.1 Expanding the Region of Attraction for Systems with Input
Saturation

Given a system of the form

ẋ = f(x) + g(x) sat(u) (38)

where

sat(u) :=















u if |u| ≤ 1

1 if u > 1

−1 if u < −1

with x(t) ∈ R
n, u(t) ∈ R, and f, g n-vectors of elements of Rn such that

f(0) = 0, we would like to synthesize a state feedback controller u = K(x)
with K ∈ Rn to enlarge the set of points which are attracted to the origin.

Again, we define the region to expand as Pβ := {x ∈ R
n|p(x) ≤ β}, for

some given positive definite p. We want to design state feedback controller
K(x) to maximize β such that the Pβ is a domain of attraction and |u| ≤ 1.
This is accomplished by appending two conditions to (24)–(26):

{x ∈ R
n | V (x) ≤ 1} ⊆ {x ∈ R

n | K(x) ≤ 1} , (39)

{x ∈ R
n | V (x) ≤ 1} ⊆ {x ∈ R

n | K(x) ≥ −1} . (40)

These two equations ensure that |u| = |K(x)| ≤ 1 for all x in the contractively
invariant set {x ∈ R

n|V (x) ≤ 1}, so the control action will not hit saturation.
Following the procedure in Sect. 4, we will obtain constraints (33)–(35).

Additionally due to the saturation, we have

(

(1 − K) − (1 − V )s10

)

∈ Σn , (41)
(

(1 + K) − (1 − V )s11

)

∈ Σn . (42)

The control design algorithm for this problem is similar to that proposed in
Sect. 4, with the inclusions of the two additional constraints (41) and (42).
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4.2 State Feedback Example

Consider the following nonlinear system:

ẋ1 = u

ẋ2 = −x1 + 1
6x3

1 − u (43)

with x(t) ∈ R
2 and u(t) ∈ R. We are interested in enlarging the domain

of attraction described by the level set Pβ := {x ∈ R
2 | p(x) ≤ β}, where

p(x) = 1
6x2

1 + 1
6x1x2 + 1

12x2
2, through state feedback. Using the algorithm

in Sect. 4, we start with randomized V0(x) that are CLFs of the linearized
system. We set the maximum degrees of V , K, s6, s8 and s9 to 2, 1, 2, 2, and
0 respectively.

Figure 2 shows the progress of β with iteration number for 10 random V0.
Out of these 10 random V0, the largest β achieved is 54.65. Figure 3 shows
the resulting domain of attraction for this case. The corresponding controller
is K = −145.94x1 +12.2517x2 and V = 0.001(2.3856x2

1 +2.108x1x2 +1.17x2
2).

Surprisingly, for higher orders of V and K, we have obtained smaller regions
of attraction. This is likely due to the nonconvexity of the overall control
design algorithm. Although each substep is optimal (i.e., convex), our iterative
approach of breaking the algorithm into substeps is not.

0 5 10 15 20
0

10

20

30

40

50

60

Iteration

β

Fig. 2. β vs. iteration no. for various V0

We can also analyze the disturbance rejection properties of this controller
when the disturbances enter the system additively in the control channel, i.e.
gw(x) = g(x). Using the Lyapunov function V found in the state feedback
design, we can bound the peak disturbance such that the set Ω1 = {x ∈
R

2 | V (x) ≤ 1} remains invariant. Using the optimization in (18), we get
‖w‖∞ ≤ √

γ = 31.62 by choosing the degree of ŝ1, ŝ2, ŝ3 and p̂ to be 4, 2, 0
and 4 respectively. If we start with x(0) ∈ Ω1 and have ‖w‖∞ ≤ 31.62, then
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x1 ’ = − 145.943 x1 + 12.2517 x2             
x2 ’ = 0.16667 x13 + 144.943 x1 − 12.2517 x2
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Fig. 3. Closed loop system’s region of attraction

‖x‖∞ ≤ √
α = 42.22. We can also bound the induced L2 → L2 disturbance

to state gain for this system by setting h(x) = [x1 x2]
T . H, s1, and s2 are all

chosen to be of degree 2. Applying (21), if we start from x(0) = 0, and as long

as ‖w‖∞ ≤ 31.62, we get ‖x‖2

‖w‖2

≤ 0.99.

5 Conclusions

Our expansion of existing SOS programming results to two classes of system
theoretic questions about nonlinear systems with polynomial vector fields ap-
pears promising. The authors believe that there is a multitude of classes of
system theoretic questions that can be answered by application of SOS pro-
gramming. Work in this area is still in its infancy, and the present classes of
problems considered is documented in [4].

For the two cases where the decision polynomials do not enter linearly, we
resorted to using iterative algorithms. As limited as the two iterative algo-
rithms are, the underlying technique provides opportunities to extend stan-
dard LMI analysis of linear systems to more general polynomial vector fields.
A drawback of the approach is that implementation of each algorithm requires
a feasible starting point. This may be produced by trial and error, or using
established nonlinear design techniques.
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7. K. Schmüdgen, “The k-moment problem for compact semialgebraic sets,” Math-

ematische Annalen, vol. 289, pp. 203–206, 1991.
8. M. Putinar, “Positive polynomials on compact semialgebraic sets,” Indiana

University Mathematical Journal, vol. 42, pp. 969–984, 1993.
9. D. Henrion and J. Lasserre, “Gloptipoly: Global optimization over polynomials

with matlab and sedumi,” in Proc of the Conference on Decision and Control,
2002, pp. 747–752.

10. M. Choi, T. Lam, and B. Reznick, “Sums of squares of real polynomials,” in
Proc of Symposia in Pure Mathematics, 1995, vol. 58(2), pp. 103–126.
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