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Abstract

Nonlinear Control Analysis and Synthesis using Sum-of-Squares Programming

by

Weehong Tan

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California, Berkeley

Professor Andrew K. Packard, Chair

This thesis considers Lyapunov based control analysis and synthesis methods for continuous

time nonlinear systems with polynomial vector fields. We take an optimization approach

of finding polynomial Lyapunov functions through the use of SOS programming and the

application of the Positivstellensatz theorem.

There are three main areas considered in this thesis: local stability analysis, local per-

formance analysis, and global and local controller and observer synthesis.

For local stability analysis, we present SOS programs that enlarge a provable region of

attraction for polynomial systems. We propose using pointwise maximum and minimum of

polynomials to reduce the number of decision variables and to obtain larger inner bounds on

the region of attraction. This idea is illustrated most notably with a Van der Pol equations

example. We also extend this region of attraction inner bound enlargement problem to

polynomial systems with uncertain dynamics by considering both parameter-dependent and

1



independent Lyapunov functions. Besides using the pointwise maximum of such functions,

we also propose gridding the uncertain parameter space to further reduce the size of the SOS

program. The significance of the gridding method is made apparent with two examples.

A related stability region analysis problem of finding a tight outer bound for attractive

invariant sets is also studied. We also present some computation statistics on a region of

attraction benchmark example with arbitrary data and increasing problem size.

We study two local performance analysis problems for polynomial systems. The first is

on finding outer bounds for the reachable set due to disturbances with L2 and L∞ bounds.

A SOS based refinement of the outer bound is proposed and illustrated with a previously

studied example. The second problem is on finding an upper bound for the L2 → L2 gain

and its refinement. Interesting results are obtained when this method is applied to an

adaptive control example.

For controller synthesis, we present SOS programs for finding global and local Control

Lyapunov Functions. For observer synthesis, we formulate SOS programs that search for

polynomial observers using Lyapunov based methods. Examples are provided to demon-

strate these synthesis methods.

It is hoped that the optimization based methods in this thesis will complement existing

nonlinear analysis and design methods.

Professor Andrew K. Packard
Dissertation Committee Chair
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4.1 Krstić example: L2 to L2 gains (γ) of single and pointwise max of 2 quartic
V ’s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 CDC’03 example: Closed loop system . . . . . . . . . . . . . . . . . . . . . 100

A.1 VDP (Single V ): Comparison of no. of decision variables . . . . . . . . . . 115

vii



Notation

R The real numbers

R+ Non-negative real numbers

R
n Real n-vectors

Z The ring of integers

Z+ Non-negative integers

M � 0 M is symmetric and positive semidefinite

M ≻ 0 M is symmetric and positive definite

Rn The set of polynomials with real coefficients in n variables

Σn The subset of Rn that are sum-of-squares polynomials

viii



Acknowledgements

I would like to express my gratitude to my advisor, Andy, for playing a pivotal part in my

undergraduate and graduate education at Berkeley, and for introducing me to the wonderful

world of automatic control systems. I’m also thankful for his mentoring and his patience.

I would like to thank my parents for being so understanding about long absence away

from home and thank my brothers for picking up the slack while I’m away.

My stay at Berkeley would have been very tough if not for the constant encouragements

from my friends Foo Leong, Jeffrey, Millie, Tien Fak, Roy & Kng Ker, Windsor, Boon Thau,

Matthew, and Ahmed.

I’m grateful to my employer, DSO National Laboratories, for sponsoring my PhD studies

and to my colleagues of the now-defunct Unmanned Systems Programme for the occasional

emails to update me on the life back home.

To the past and present residents of BCCI, I would like to say a big thank you for the

interesting discussions and good company.

Special thanks to Pablo Parrilo for showing me the finer points of using SOSTOOLS,
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Chapter 1

Introduction

In this thesis, we consider control analysis and synthesis problems for continuous time

nonlinear systems with polynomial vector fields. The standard textbook approach to such

problems for a general nonlinear system is to find a Lyapunov function that satisfies a list of

conditions, from which certain properties of the system can be concluded. However, such an

approach is generally presented as non-constructive and the choice of a candidate Lyapunov

function is often by trial and error.

In addressing the non-constructive nature of finding a candidate Lyapunov function,

we take the optimization route to search for the Lyapunov function. With the recent

development of sum-of-squares (SOS) programming and the Positivstellensatz theorem from

real algebraic geometry, we can try to pose control analysis and synthesis problems as SOS

programs that are computationally tractable. In using SOS programs, we are restricting

ourselves to systems with polynomial vector fields and polynomial Lyapunov functions. This

class of problem can be extended to non-polynomial vector fields by recasting them into

rational vector fields, at the expense of incurring additional variables and constraints. The
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recasting of non-polynomial vector fields is documented in [25] and is outside the scope of

this thesis.

Even though a SOS program is computationally tractable, the problem size still grows

rapidly as the number of variables and the degree of the polynomial grows. Hence, one

emphasis of this thesis is on problem formulation that reduces the number of decision

variables so that our method can be applied to larger problems.

We also emphasize local nonlinear analysis and synthesis problems, which are generally

more useful in nonlinear systems. However, such local problems result in SOS programs

that are bilinear in the decision polynomials. In our previous works [15], [34], algorithms

were proposed that involved a two-way iterative search between the Lyapunov function

and the SOS multipliers. With the recent introduction of YALMIP [23] and PENBMI [19],

which allow for bilinear polynomial optimization, we can do away with the two-way iterative

search, but as PENBMI is a local bilinear matrix inequality solver, convergence to the global

optimum is not guaranteed.

1.1 Thesis Overview and Contributions

The outline of this thesis is as follows:

Chapter 2 gives the background material needed for problem formulation in the subse-

quent chapters. A brief overview of semidefinite programming, polynomial definitions, sum-

of-squares programming, the Positivstellensatz theorem and its relation to the S-procedure

are presented. Of particular note is Section 2.3.3 on the computational aspects of sum-of-

squares programming that will motivate the development of various methods in Chapter 3

to reduce the number of decision variables.
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Chapter 3 addresses the local stability analysis of polynomial systems. In the first

part, we consider the problem of enlarging a provable region of attraction for the polynomial

system. The starting point is Section 4.2 of [14], where the search for a single polynomial

Lyapunov function using SOS programming was proposed. This technique is extended in

this thesis to the use of pointwise maximum and minimum of several polynomials. The

advantage of using such composite Lyapunov functions is that composition of several low

degree polynomials can often give level sets that are as rich as single Lyapunov functions

of higher degrees, and at the same time utilizes fewer decision variables. Such a usage of

composite Lyapunov functions is a recurring theme in this chapter. For systems without

a local asymptotically stable equilibrium point, there might still be an invariant set, so

a related problem of finding tight outer bounds for attractive invariant sets is studied.

Next, we formulate SOS programs that enlarge a provable region of attraction for uncertain

systems, using both parameter-dependent and independent Lyapunov functions. Besides the

use of composition of such functions to reduce the number of decision variables, the method

of solving the SOS program on a gridded uncertain parameter space is also proposed to

further reduce the size of the SOS program. Lastly, we present some computation statistics

on a region of attraction benchmark example with arbitrary data and increasing problem

size to indicate how well our optimization methods and the bilinear solver perform.

Chapter 4 studies the local performance analysis of polynomial systems. The problem

of finding an upper bound for the reachable set of a polynomial system that is subjected

to an L2-norm bounded disturbance was first presented in [15]. In this thesis, we extend

this idea further by formulating a SOS program based refinement on this upper bound.

We also study a related problem of finding an upper bound for the reachable set due to

disturbances with L2 and L∞ bounds. The second part of this chapter derives an upper

3



bound of the induced L2 → L2 gain for a polynomial system. We also propose a refinement

of this induced gain by using composite Lyapunov functions that are pointwise maximum

of polynomials.

Chapter 5 covers controller and observer synthesis for polynomial systems. Unlike

our previous work in [15], where a polynomial controller is explicitly synthesized, we take

the approach of finding a Control Lyapunov Function (CLF) for the system using SOS

programming, after which the control law is constructed from the CLF. We also present

SOS programs that search for local CLFs which enlarge the closed loop system’s region

of attraction. For nonlinear observer synthesis, we take the approach of Lyapunov based

methods, along the lines proposed by Vidyasagar [39].

Chapter 6 presents the conclusions and some recommendations of future research

directions in this area.

In the Appendix, some practical aspects of using SOS programming are presented,

based on this author’s anecdotal experience. It is hoped that the reader finds this appendix

useful when using SOS programming tools.

1.2 Summary of Examples

Listed below are the examples in this thesis.

1. Provable region of attraction enlargement:

• Van der Pol equations: Section 3.1.4.1

• Hahn’s example: Section 3.1.4.2

• 3-dimensional system with unstable limit cycle: Section 3.1.4.3

4



2. Attractive invariant sets:

• Van der Pol oscillator: Section 3.2.1

3. Provable region of attraction enlargement for uncertain systems:

• Uncertain Van der Pol equations: Section 3.3.4.1

• Uncertain 3-dimensional system with unstable limit cycle: Section 3.3.4.2

4. Computation statistics:

• Scalable benchmark example with known ROA: Section 3.4

5. Reachable set refinement:

• CDC’03 example [15] revisited: Section 4.1.3

6. Upper bound of L2 to L2 gain:

• Adaptive control example from Krstić [21]: Section 4.2.3

7. Control Lyapunov Functions:

• Global stabilization of a bilinear system: Section 5.1.4.1

• Global stabilization of a multi-input system: Section 5.1.4.2

• Local stabilization of CDC’03 example [15]: Section 5.2.2

8. Nonlinear Observers:

• Duffing equations: Section 5.3.3.1

• CDC’03 example [15] using feedback of observed states: Section 5.3.3.2

5



Chapter 2

Background

In this chapter, we present a summary of the background material needed for problem

formulation in subsequent chapters.

2.1 Semidefinite Programming

A semidefinite program (SDP) is a problem with a linear objective, and semidefinite

constraints. Formally, suppose c ∈ Rm, and F0, F1, . . . , Fm ∈ R
n×n are real, symmetric

matrices. The SDP defined by them is

min
x∈Rm

cTx

subject to

F (x) := F0 +
m∑

i=1

xiFi � 0 (2.1)

Here, � means positive semidefinite (partial ordering for symmetric matrices). F (x) � 0 is

called a linear matrix inequality (LMI).

SDP has been studied extensively and good references on this topic include [38] and

6



[43]. The two most important properties of a SDP are that it is a convex optimization

problem and it is computationally tractable. There are numerous SDP solvers available,

such as SeDuMi [33], SDPT3 [36] and LMILAB. As these solvers have specific formats to

describe SDPs, parsers such as YALMIP [23] and TKLMITOOL [9] are extremely useful in

setting up SDPs in these specific formats.

2.2 Polynomial Definitions

Definition 2.1. A Monomial mα in n variables is a function defined as mα(x) = xα :=

xα1
1 xα2

2 · · ·xαn
n for α ∈ Z

n
+. The degree of a monomial is defined as degmα :=

∑n
i=1 αi.

Definition 2.2. A Polynomial f in n variables is a finite linear combination of mono-

mials, with cα ∈ R:

f :=
∑

α

cαmα =
∑

α

cαx
α.

Define Rn to be the set of all polynomials in n variables. The degree of f is defined as

deg f := maxα degmα (provided the associated cα is non-zero).

Additionally, we define Σn to be the set of sum-of-squares (SOS) polynomials in n

variables:

Σn :=

{
p ∈ Rn

∣∣∣∣∣ p =
t∑

i=1

f2
i , fi ∈ Rn, i = 1, . . . , t

}
.

Obviously if p ∈ Σn, then p(x) ≥ 0 ∀x ∈ R
n. However, the converse not true, i.e. there are

globally non-negative polynomials that are not SOS polynomials, as first noted by Hilbert

[27].

7



2.3 Sum-of-squares Programming

In many control problems, there are conditions requiring a polynomial to be non-

negative. However, checking whether a polynomial is globally non-negative is NP-hard

when its degree is at least 4 [27], while checking whether a polynomial is SOS is a SDP, as

we will show in the subsection below. As a consequence, conditions on non-negativity are

replaced by sufficient conditions on the polynomial being SOS in our problem formulation

in subsequent chapters. This replacement is often termed a “relaxation”.

2.3.1 Sum-of-squares Decomposition

Using a “Gram matrix” approach, Choi et al. [7] showed that given p ∈ Rn of degree

2d, p ∈ Σn if and only if ∃ Q � 0 such that

p(x) = zT (x)Qz(x), z(x) = [1, x1, x2, . . . , xn, x1x2, . . . , x
d
n]T . (2.2)

The vector z(x) consists of
(
n+d

d

)
monomials in x. Since the monomials are not algebraically

independent, the matrixQmay not be unique, and there are some representations of p where

Q � 0, but not for others. By expanding zT (x)Qz(x) and matching the coefficients of x to

polynomial p, we can show that the set of Q that satisfies (2.2) is an affine subspace.

If a Q � 0 is found, by eigenvalue decomposition Q = T TDT , where D = diag{di},

di ≥ 0, and hence the SOS decomposition for p(x) =
∑

i di(Tz)
2
i . The number of squares

of polynomials in the SOS decomposition of p(x) is the same as the rank of Q.

Powers and Wörmann [28] proposed an algorithm to check if any Q � 0 exists for a

given p ∈ Rn using inefficient, but exact decision methods. However, they did not exploit

the convex property of this problem, which Parrilo [27] showed is a SDP.
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A simple example below illustrates the abovementioned points:

Let p(x) := 1 + 3x2
1 + 4x1x

2
2 + x4

1 + 4x4
2. To check if p ∈ Σn, let p = zTQz, where

z = [1, x1, x2, x
2
1, x1x2, x

2
2]

T and symmetric Q ∈ R
6×6. If we can find a Q � 0, then

p ∈ Σn. By multiplying out zT (x)Qz(x) and matching the coefficients of x to polynomial

p, we can see that there are 15 linear constraints in 21 variables as shown in the table below:

Monomials Equalities

1 q11=1

x1 2q12=0

x2 2q13=0

x2
1 2q14 + q22=3

x1x2 2q15 + 2q23=0

x2
2 2q16 + q33=0

x3
1 2q24=0

x2
1x2 2q25 + 2q34=0

x1x
2
2 2q26 + 2q35=4

x3
2 2q36=0

x4
1 q44=1

x3
1x2 2q45=0

x2
1x

2
2 2q46 + q55=0

x1x
3
2 2q56=0

x4
2 q66=4

One particular choice of G0 (not necessarily � 0)

such that p = zTG0z is

G0 :=





1 0 0 0 0 0

0 3 0 0 0 0

0 0 0 0 2 0

0 0 0 1 0 0

0 0 2 0 0 0

0 0 0 0 0 4





As the system of linear equations is under-determined, there are several degrees of

freedom in finding the entries of Q. For example, the monomial x1x2 has the equality

2q15 + 2q23 = 0. Since 2q15(x1x2) − (x1)2q23(x2) = 0, adding any linear combinations of

2q15 − 2q23 = 0 to 2q15 + 2q23 = 0 still satisfies the constraint for the monomial x1x2. For

this example, we can find 6 such relations that have {zTGiz}6
i=1 = 0, which form an affine

subspace for Q.

The search for a Q � 0 such that p = zTQz is precisely a SDP feasibility problem (2.1):

Find λ ∈ R
6 such that

Q = G0 +
6∑

i=1

λiGi � 0

9



where

G1 :=





0 0 0 0 1 0

0 0 −1 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0





G2 :=





0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 2 0

0 0 0 −1 0 0





G3 :=





0 0 0 −1 0 0

0 2 0 0 0 0

0 0 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





G4 :=





0 0 0 0 0 −1

0 0 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−1 0 0 0 0 0





G5 :=





0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 −1 0 0

0 0 −1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0





G6 :=





0 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 1 0 0 0

0 −1 0 0 0 0





Note that Q0 := G0, Q1 := G0−2G6 and Q2 := G0−G3−2G6 are different representa-

tions of p. However Q0 6� 0, but Q1 � 0 and Q2 � 0. Factoring, for example, Q2 into LTL,

where

L :=




1 0 0 1 0 0

0 1 0 0 0 2



 ,

we have the following SOS decomposition for p(x):

p(x) = 1 + 3x2
1 + 4x1x

2
2 + x4

1 + 4x4
2 = (1 + x2

1)
2 + (x1 + 2x2

2)
2.

10



2.3.2 Sum-of-squares Programming

Besides showing that the SOS decomposition problem is an SDP, Parrilo also proved

the following simple extension:

Theorem 2.1 (Parrilo). Given a finite set {pi}m
i=0 ∈ Rn, the existence of {ai}m

i=1 ∈ R

such that

p0 +

m∑

i=1

aipi ∈ Σn

is an SDP feasibility problem.

This theorem is useful since it allows one to answer questions like the following SOS

programming example.

Example 2.1. Given p0, p1 ∈ Rn, does there exist a k ∈ Rn, of a given degree, such that

p0 + kp1 ∈ Σn. (2.3)

To answer this question, write k as a linear combination of its monomials {mj}, k =

∑s
j=1 ajmj . Rewrite (2.3) using this decomposition

p0 + kp1 = p0 +
s∑

j=1

aj(mjp1). (2.4)

Since (mjp1) ∈ Rn, (2.4) is a feasibility problem that can be checked by Theorem 2.1.

SOS Programs

A software package, SOSTOOLS [29, 30], exists to aid in solving the LMIs that result

from SOS programming. This package lets the user choose between using two SDP solvers

SeDuMi [33] or SDPT3 [36]. A SOS program, as defined by SOSTOOLS, is of the form:

11



Given polynomials {ai,j(x)} ∈ Rn, search for {pi(x)}N̂
i=1 ∈ Rn and {pi(x)}N

i=N̂+1
∈ Σn that

min wT c

where c is a vector formed from the unknown coefficients of

polynomials pi(x) for i = 1, 2, . . . , N̂

SOS polynomials pi(x) for i = (N̂ + 1), . . . , N

such that

a0,j +
N∑

i=1

pi(x)ai,j(x) = 0 for j = 1, 2, . . . , Ĵ

a0,j +

N∑

i=1

pi(x)ai,j(x) ∈ Σn for j = (Ĵ + 1), . . . , J

SOSTOOLS requires that the SOS program be linear in the decision polynomials. In

the past [15, 16, 34], whenever we encountered SOS programs that were bilinear in the

decision polynomials, we used “V-S” iteration, holding one set of decision polynomials fixed

and optimizing over the other set (which is a SDP), then switching over the sets which we

were optimizing and holding fixed.

More recently, YALMIP [23], a versatile parser, added SOS programming functionality

that allows bilinear decision polynomials. This new development allows us to do away with

the “V-S” iteration, but as it uses PENBMI [19], a local bilinear matrix inequality solver,

convergence to the global optimum is not guaranteed.

2.3.3 Computational Aspects of SOS Programming

Despite having these software tools, we still run into dimensionality problems: the

number of decision variables increases exponentially with the number of variables, n, and

the degree of the polynomial, 2d.

12



Recall in Section 2.3.1 that the set of Q � 0 that satisfies p(x) = zT (x)Qz(x) is an affine

subspace because the variables in z are not algebraically independent. The affine subspace

is
{
Q ∈ R

r×r

∣∣∣∣∣Q = G0 +

N1∑

i=1

λiGi , λi ∈ R

}
(2.5)

where

N1 = 1
2

[(
n+d

d

)2
+

(
n+d

d

)]
−

(
n+2d

2d

)
, r =

(
n+d

d

)
(2.6)

and the Gi’s form a basis for Q. This representation of the affine subspace is known as

explicit or image representation. Table 2.1 illustrates the exponential growth in the number

of decision variables with n and 2d: in each entry, the left column is r, while the right

column is N1. It is because of this exponential growth in the number of decision variables

that motivates us to keep the degree of the polynomial as low as possible.

Table 2.1. r and N1 wrt to n and 2d

2d
n 2 4 6 8 10

2 3 0 6 6 10 27 15 75 21 165
3 4 0 10 20 20 126 35 465 56 1310
4 5 0 15 50 35 420 70 1990 126 7000
6 7 0 28 196 84 2646 210 19152 462 98945
8 9 0 45 540 165 10692 495 109890 1287 785070
10 11 0 66 1210 286 33033 1001 457743 3003 4325750

We can also pose the SOS program in the dual form, and the affine subspace will

be described by defining equations (also known as implicit or kernel representation) [27].

The advantage of this representation is that for high degree polynomials, the number of

decision variables is significantly less than N1. However, most of the problems we encounter

are bilinear in the decision polynomials, which can be formulated easily in the explicit

representation, but not easily in the implicit representation, so we cannot make use of the

dual form.
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2.4 The Positivstellensatz

In this section, we define concepts to state a central theorem from real algebraic ge-

ometry, the Positivstellensatz, which we will hereafter refer to as the P-satz. This is a

powerful theorem which generalizes many known results. For example, applying the P-satz,

it is possible to derive the S-procedure by carefully picking the free parameters, as will be

shown in section 2.4.1.

Definition 2.3. Given {g1, . . . , gt} ∈ Rn, the Multiplicative Monoid generated by gj’s

is the set of all finite products of gj’s, including 1 (i.e. the empty product). It is denoted as

M(g1, . . . , gt). For completeness define M(φ) := 1.

An example: M(g1, g2) = {gk1
1 g

k2
2 | k1, k2 ∈ Z+}.

Definition 2.4. Given {f1, . . . , fr} ∈ Rn, the Cone generated by fi’s is

P(f1, . . . , fr) :=

{
s0 +

l∑

i=1

sibi

∣∣∣∣∣ l ∈ Z+, si ∈ Σn, bi ∈ M(f1, . . . , fr)

}
.

Note that if s ∈ Σn and f ∈ Rn, then f2s ∈ Σn as well. This allows us to express a

cone of {f1, . . . , fr} as a sum of 2r terms.

An example: P(f1, f2) = {s0 + s1f1 + s2f2 + s3f1f2 | s0, . . . , s3 ∈ Σn}.

Definition 2.5. Given {h1, . . . , hu} ∈ Rn, the Ideal generated by hk’s is

I(h1, . . . , hu) :=
{∑

hkpk

∣∣∣ pk ∈ Rn

}
.

With these definitions we can state the following theorem, taken from [4, Theorem

4.2.2]:

Theorem 2.2 (Positivstellensatz). Given polynomials {f1, . . . , fr}, {g1, . . . , gt}, and

{h1, . . . , hu} in Rn, the following are equivalent:
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1. The set below is empty:






x ∈ R
n

∣∣∣∣∣∣∣∣∣∣∣∣

f1(x) ≥ 0, . . . , fr(x) ≥ 0,

g1(x) 6= 0, . . . , gt(x) 6= 0,

h1(x) = 0, . . . , hu(x) = 0






2. There exist polynomials f ∈ P(f1, . . . , fr), g ∈ M(g1, . . . , gt), h ∈ I(h1, . . . , hu) such

that

f + g2 + h = 0.

In subsequent chapters, we will often encounter set containment questions of the form:

Given h, f0, . . . , fr ∈ Rn, does the following set containment hold

{x |h(x) = 0, f1(x) ≥ 0, . . . , fr(x) ≥ 0} ⊆ {x | f0(x) ≥ 0} ? (2.7)

The following proposition shows that the above set containment question can be posed as

a SOS program with the application of P-satz and some simplifications.

Proposition 2.1. If there exists p ∈ Rn, s01, . . . , s0r ∈ Σn such that

p(x)h(x) −
r∑

j=1

s0j(x)fj(x) + f0(x) ∈ Σn. (2.8)

then the set containment condition (2.7) holds.

Proof. Condition (2.7) is equivalent to

{x |h(x) = 0, f1(x) ≥ 0, . . . , fr(x) ≥ 0,−f0(x) ≥ 0, f0(x) 6= 0} = ∅. (2.9)

Application of Theorem 2.2 (P-satz) to (2.9) means that (2.9) holds if and only if there

exists p ∈ Rn, s(·) ∈ Σn and k ∈ Z+ such that
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p̂h+ s+ s0(−f0) +
r∑

i=1

sifi +
r∑

j=1

s0j(−f0)fj+

r∑

i=1

r∑

j=i

sijfifj + · · · + s0...r(−f0)
r∏

i=1

fi + f2k
0 = 0. (2.10)

Setting k = 1, p̂ = pf0, and all s(·) = 0 except s0, s01, . . . , s0r, we have sufficient condition

−f0



−ph+ s0 +
r∑

j=1

s0jfj − f0



 = 0. (2.11)

Since f0 is not identically zero, the second term in (2.11) results in (2.8).

2.4.1 Generalized S-procedure

What does the S-procedure [5] look like in the P-satz formalism? Given symmetric

n× n matrices {Ak}m
k=0, the S-procedure states:

If there exist non-negative scalars {λk}m
k=1 such that A0 −

∑m
k=1 λkAk � 0, then

m⋂

k=1

{
x ∈ R

n|xTAkx ≥ 0
}
⊆

{
x ∈ R

n|xTA0x ≥ 0
}
.

Written in P-satz form, the question becomes

“is





x ∈ R

n

∣∣∣∣∣∣∣∣

xTA1x ≥ 0, . . . , xTAmx ≥ 0,

−xTA0x ≥ 0, xTA0x 6= 0





empty?”

Certainly, if the λk exist, define 0 � Q := A0 −
∑m

k=1 λkAk. Further define SOS functions

s0(x) := xTQx, s01 := λ1, . . . , s0m := λm. Note that

f := (−xTA0x)s0 +

m∑

k=1

(−xTA0x)(x
TAkx)s0k ∈ P

(
xTA1x, . . . , x

TAmx,−xTA0x
)

and that g := xTA0x ∈ M(xTA0x). Substitution yields f + g2 = 0 as desired.
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The following lemma is a special case of the P-satz theorem and is a generalization of

the S-procedure. Instead of searching for non-negative scalars {λk}m
k=1, we are searching

over SOS polynomials {sk}m
i=1.

Lemma 2.1 (Generalized S-procedure). Given {pi}m
i=0 ∈ Rn. If there exist {sk}m

i=1 ∈

Σn such that p0 −
∑m

i=1 sipi ∈ Σn, then

m⋂

i=1

{x ∈ R
n | pi(x) ≥ 0} ⊆ {x ∈ R

n | p0(x) ≥ 0}.

Proof. Since p0 −
∑m

i=1 sipi ∈ Σn, so p0 ≥ ∑m
i=1 sipi ∀x. For any x̄ ∈ ⋂m

i=1{x ∈ R
n | pi(x) ≥

0}, since si(x̄) ≥ 0, so
∑m

i=1 sipi ≥ 0, hence p0(x̄) ≥ 0.

2.5 Remarks on Notation

We use the notation Σn to denote the set of SOS polynomials in n real variables. The

particular variables are not noted, and usually there is an obvious n-dimensional variable

present in the discussion. Similarly, the notation Σn+m also appears, meaning SOS polyno-

mial in n+m real variables, where, again, the particular variables are hopefully clear from

the context of the discussion.

In several places, a relationship between an algebraic condition on some real variables

and input/output/state properties of a dynamical system is claimed. In nearly all of these

types of statements, we use same symbol for a particular real variable in the algebraic

statement as well as the corresponding signal in the dynamical system. This could be a

source of confusion, so care on the reader’s part is required.
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Chapter 3

Stability Analysis

Finding the stability region or region of attraction of a nonlinear system is a topic of

significant importance and has been studied extensively, for example in [8], [11], [6] and [42].

It also has practical applications, such as determining the operating envelope of aircraft and

power systems.

In this chapter, we present a method of using sum-of-squares (SOS) programming to

search for polynomial Lyapunov functions that enlarge a provable region of attraction of

nonlinear systems with polynomial vector fields. Lyapunov functions with degrees higher

than quadratic have level sets that are richer than ellipses, and thus could potentially give

larger provable regions of attraction.

A major problem with using higher degree Lyapunov functions is the extremely rapid

increase in the number of optimization decision variables as the state dimension and the

degree of the Lyapunov function (and the vector field) increase (see Section 2.3.3). As a

result, in Section 3.1, we propose using pointwise maximum or minimum of polynomial

functions to obtain richly shaped level sets while keeping the degree of polynomials low.
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Figure 3.1 shows the level sets of pointwise maximum and minimum of two quadratic,

positive definite functions. For a single Lyapunov function, only polynomials with degrees

higher than quadratic would have such similar shapes for level sets.
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Figure 3.1. Left: V = max{V1, V2}, Right: V = min{V1, V2}

By its very nature, the region of attraction analysis is only applicable to systems with

local asymptotically stable equilibrium points. For systems without such properties, we

study a related stability region problem of finding a tight outer bound for an attractive

invariant set in Section 3.2.

In Section 3.3, we consider the problem of enlarging a provable region of attraction

for polynomial systems with uncertainty using both parameter-dependent and independent

Lyapunov functions and the pointwise maximum of such functions.

Finally in Section 3.4, we present computation statistics of a benchmark example of

provable region of attraction enlargement. The statistics are compiled to give us a idea of

how well our optimization problems and the bilinear solver perform with arbitrary data and

increasing problem size.
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3.1 Enlarging Region of Attraction

Consider a system of the form

ẋ = f(x) (3.1)

where x(t) ∈ R
n and f is a n-vector of elements of Rn with f(0) = 0. We want to find a

provable region of attraction for this system, i.e. all points starting in this region will be

attracted to the fixed point at the origin.

The following lemma on finding a region of attraction using Lyapunov function is a

modification of a lemma from [40, pg. 167] and [18, pg. 122]:

Lemma 3.1. If there exists a continuously differentiable function V : R
n → R such that

V is positive definite, (3.2)

Ω := {x ∈ R
n |V (x) ≤ 1} is bounded, and (3.3)

{x ∈ R
n |V (x) ≤ 1} \ {0} ⊆ {x ∈ R

n | ∂V
∂x
f(x) < 0} (3.4)

then for all x(0) ∈ Ω, the solution of (3.1) exists and limt→∞ x(t) = 0. As such, Ω is a

subset of the region of attraction for (3.1).

Proof. Let Ωr := {x ∈ R
n |V (x) ≤ r ≤ 1}, so Ωr ⊆ Ω and hence Ωr is bounded. Because

V̇ < 0 on Ωr \ {0}, if x(0) ∈ Ωr, V (x(t)) ≤ V (x(0)) ≤ r while the solution exists. This

means that solution starting inside Ωr will remain in Ωr while the solution exists. Since Ωr

is compact, the system (3.1) has an unique solution defined for all t ≥ 0 whenever x(0) ∈ Ωr.

Take ǫ > 0. Define the set Sǫ := {x ∈ R
n | ǫ

2 ≤ V (x) ≤ 1}. Note that Sǫ ⊆ Ω\{0} ⊆ {x ∈

R
n | ∂V

∂x
f(x) < 0}. Since Sǫ is a compact set, ∃ rǫ > 0 such that V̇ ≤ −rǫ < 0 on Sǫ. This

implies that ∃ t∗ such that V (x(t)) < ǫ for all t > t∗, i.e. x(t) ∈ Tǫ := {x ∈ R
n |V (x) < ǫ}

for all t > t∗. This shows that if x(0) ∈ Ω, V (x(t)) → 0 as t→ ∞.
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Now, we need to show that x(t) → 0 as t → ∞ as well. Let ǫ > 0. Define Ωǫ := {x ∈

R
n | ‖x‖ ≥ ǫ, V (x) ≤ 1}. Ωǫ is closed and bounded, with 0 /∈ Ωǫ. Since V is continuous and

positive definite, and Ωǫ is compact, ∃ γ such that V (x) ≥ γ > 0 on Ωǫ. We have already

established that V (x(t)) → 0 as t→ ∞, so ∃ t̂ such that for all t > t̂, V (x(t)) < γ and hence

x(t) /∈ Ωǫ, which means ‖x(t)‖ < ǫ. So x(t) → 0 as t→ ∞.

In order to enlarge Ω (by choice of V ), we define a variable sized region Pβ := {x ∈

R
n | p(x) ≤ β}, and maximize β while imposing the constraint Pβ ⊆ Ω. Here, p(x) is a

positive definite polynomial, chosen to reflect the relative importance of the states. With

the application of Lemma 3.1, the problem can be posed as the following optimization

problem:

max
V ∈Rn

β s.t.

V (x) > 0 for all x ∈ R
n\{0} and V (0) = 0, (3.5)

the set {x ∈ R
n |V (x) ≤ 1} is bounded,

{x ∈ R
n | p(x) ≤ β} ⊆ {x ∈ R

n |V (x) ≤ 1}, (3.6)

{x ∈ R
n |V (x) ≤ 1}\{0} ⊆ {x ∈ R

n | ∂V
∂x
f(x) < 0}. (3.7)

3.1.1 Single Lyapunov Function

For a single differentiable Lyapunov function, [14, §4.2.2] presented the sufficient condi-

tions for finding such a V . We will reproduce the steps leading to the sufficient conditions

as the exposition for composite Lyapunov functions will be similar.

Expressing (3.5)–(3.7) as empty set conditions, we get:

{x ∈ R
n |V (x) ≤ 0, x 6= 0} = ∅, (3.8)
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{x ∈ R
n | p(x) ≤ β, V (x) ≥ 1, V (x) 6= 1} = ∅, (3.9)

{x ∈ R
n |V (x) ≤ 1, ∂V

∂x
f(x) ≥ 0, x 6= 0} = ∅. (3.10)

If li(x) is a given positive definite polynomial, then the constraint x 6= 0 is equivalent

to li(x) 6= 0. Usually, we take li(x) of the form li(x) =
∑n

j=1 ǫijx
2
j , where ǫij are positive

numbers. Applying P-satz (Theorem 2.2) to each of the constraints (3.8)–(3.10), and using

l1 for (3.8) and l2 for (3.10) respectively, we have

s1 − V s2 + l2k1
1 = 0, (3.11)

s3 + (β − p)s4 + (V − 1)s5 + (β − p)(V − 1)s6 + (V − 1)2k2 = 0, (3.12)

s7 + (1 − V )s8 + ∂V
∂x
fs9 + (1 − V )∂V

∂x
fs10 + l2k3

2 = 0 (3.13)

where s1, . . . , s10 ∈ Σn and k1, k2, k3 ∈ Z+.

To keep the degree of the polynomial in each constraint low, and also to make the

problem in the form solvable by SOS software, we simplify the constraints (3.11)–(3.13).

This will result in sufficient conditions that are relaxations of the original problem.

First, pick k1 = k2 = k3 = 1. Next, pick s2 = l1 and s1 = l1ŝ1 and factor out l1 in

(3.11). In (3.12), set s3 = s4 = 0 and factor out a (V − 1) term. For (3.13), set s10 = 0 and

factor out l2.

After these simplifications, we have

Optimization Problem 3.1 (Single Lyapunov ROA):

maxβ over V ∈ Rn, V (0) = 0, s6, s8, s9 ∈ Σn,

such that

V − l1 ∈ Σn, (3.14)
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−
(
(β − p)s6 + (V − 1)

)
∈ Σn, (3.15)

−
(
(1 − V )s8 + ∂V

∂x
fs9 + l2

)
∈ Σn. (3.16)

Note that in (3.14), V is underbounded by l1, a positive definite function, so V is

positive definite if constraint (3.14) is satisfied. Moreover, with V underbounded by l1, the

set Ω := {x ∈ R
n |V (x) ≤ 1} is bounded. We can also obtain constraint (3.15) directly

from (3.6) by using the generalized S-procedure (Lemma 2.1). We call Ω a provable region

of attraction because with the polynomials found from the above optimization, verifying

(3.11) – (3.13) is straightforward.

3.1.2 Pointwise Max

Lemma 3.2. If there exist continuously differentiable functions V1, V2 : R
n → R such that

V := max{V1, V2}, V is positive definite, (3.17)

Ω := {x ∈ R
n |V (x) ≤ 1} is bounded, (3.18)

R1 := {x ∈ R
n |V2(x) ≤ V1(x) ≤ 1}, R1 \ {0} ⊆ {x ∈ R

n | ∂V1
∂x
f(x) < 0}, (3.19)

R2 := {x ∈ R
n |V1(x) ≤ V2(x) ≤ 1}, R2 \ {0} ⊆ {x ∈ R

n | ∂V2
∂x
f(x) < 0} (3.20)

then for all x(0) ∈ Ω, the solution of (3.1) exists and limt→∞ x(t) = 0. As such, Ω is a

subset of the region of attraction for (3.1).

Proof. Since R1 ∪R2 = Ω, conditions (3.19) and (3.20) ensures that if x(0) ∈ Ω, V (x(t)) ≤

V (x(0)) ≤ 1 while the solution exists. This means that solution starting inside Ω will remain

in Ω while the solution exists. Since Ω is compact, the system (3.1) has an unique solution

defined for all t ≥ 0 whenever x(0) ∈ Ω.
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Take ǫ > 0. Define Sǫ := {x ∈ R
n | ǫ

2 ≤ V (x) ≤ 1}, so Sǫ ⊆ (R1 ∪ R2) \ {0}. Note

that for each i, (Sǫ ∩ Ri) ⊆ Ri \ {0} ⊆ {x ∈ R
n | ∂Vi

∂x
f(x) < 0}, so on the compact set

Sǫ ∩ Ri, ∃ ri,ǫ, such that ∂Vi

∂x
f(x) ≤ −ri,ǫ < 0. Consequently, if x(t) ∈ Sǫ ∩ R1 on [tA, tB],

then V (x(tB)) ≤ −r1,ǫ(tB − tA) + V (x(tA)). Similarly, if x(t) ∈ Sǫ ∩ R2 on [tA, tB], then

V (x(tB)) ≤ −r2,ǫ(tB − tA) + V (x(tA)). Therefore, if x(t) ∈ Sǫ ∩ (R1 ∪R2) on [tA, tB], then

V (x(tB)) ≤ −rǫ(tB − tA) + V (x(tA)), where rǫ = min(r1,ǫ, r2,ǫ). Since rǫ > 0, this implies

that ∃ t∗ such that V (x(t)) < ǫ for all t > t∗, i.e. x(t) ∈ Tǫ := {x ∈ R
n |V (x) < ǫ} for all

t > t∗. This shows that if x(0) ∈ Ω, V (x(t)) → 0 as t→ ∞.

Since V is positive definite and continuous, and the set Ω is bounded, these conditions

are exactly the same as those conditions used in showing that x(t) → 0 as t→ ∞ in Lemma

3.1, so with V (x(t)) → 0 as t→ ∞, x(t) → 0 as well.

Extension of Lemma 3.2 to V (x) = maxq
i=1{Vi(x)} for q > 2 (but finite) is obvious. Let

l1(x) be a given positive definite polynomial. To simplify the SOS formulation for V (x)

being positive definite, we require that each Vi be underbounded by l1(x), so that each Vi

is positive definite, i.e.

Vi − l1 ∈ Σn, for i = 1, . . . , q. (3.21)

Constraints (3.21) are sufficient conditions for V to be positive definite (3.17). Again, since

V is underbounded by l1, the set {x ∈ R
n |V (x) ≤ 1} is bounded.

For constraint (3.6), note that {x ∈ R
n |V (x) ≤ 1} = ∩q

i=1{x ∈ R
n |Vi(x) ≤ 1}, so

{x ∈ R
n | p(x) ≤ β} ⊆ {x ∈ R

n |V (x) ≤ 1}

≡{x ∈ R
n | p(x) ≤ β} ⊆ [∩q

i=1{x ∈ R
n |Vi(x) ≤ 1}]

≡{x ∈ R
n | p(x) ≤ β} ⊆ {x ∈ R

n |Vi(x) ≤ 1}, for i = 1, . . . q. (3.22)
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Conditions (3.19) – (3.20) are satisfied when each constraint below is satisfied:

{x |V1(x) ≤ 1}\{0} ⊆ {x | ∂V1
∂x
f(x) < 0} when V1(x) ≥ Vj(x), j = 2, . . . , q

...

{x |Vq(x) ≤ 1}\{0} ⊆ {x | ∂Vq

∂x
f(x) < 0} when Vq(x) ≥ Vj(x), j = 1, . . . , q − 1

(3.23)

Applying P-satz to the constraints (3.21) - (3.23) and making simplifying choices, we

have the following sufficient conditions:

Optimization Problem 3.2 (Pointwise maximum ROA):

maxβ over Vi ∈ Rn, Vi(0) = 0, s6i, s8i, s9i, s0ij ∈ Σn, i = 1, . . . q

such that

Vi − l1 ∈ Σn, (3.24)

−
(
(β − p)s6i + (Vi − 1)

)
∈ Σn, (3.25)

−
[
(1 − Vi)s8i + ∂Vi

∂x
fs9i + l2

]
−

q∑

j=1
j 6=i

s0ij(Vi − Vj) ∈ Σn. (3.26)

There are 3q SOS constraints for this optimization problem.

3.1.3 Pointwise Min

Consider the case when V (x) = minq
i=1{Vi(x)}. Again, constraints (3.21) are sufficient

conditions for V to be positive definite (3.5). We use the set containment condition {x ∈

R
n | p(x) ≤ β} ⊆ {x ∈ R

n |V (x) < 1}, which is a sufficient condition for constraint (3.6).

{x ∈ R
n | p(x) ≤ β} ⊆ {x ∈ R

n |V (x) < 1}

≡{x ∈ R
n | p(x) ≤ β} ⊆ [∪q

i=1{x ∈ R
n |Vi(x) < 1}]

≡{x | p(x) ≤ β} ∩ [∪q
i=1{x |Vi(x) < 1}]c is empty

25



≡{x | p(x) ≤ β} ∩ [∩q
i=1{x |Vi(x) ≥ 1}] is empty (3.27)

Apply P-satz to (3.27), and removing the higher order terms in the cone, we have the

following sufficient condition for (3.27):

−
[
s10(β − p) +

q∑

i=1

s1i(Vi − 1) + 1

]
∈ Σn (3.28)

The development for constraint (3.7) is similar to the case when V = maxq
i=1{Vi} and

will not be repeated here. Hence, sufficient conditions for finding a provable region of

attraction for V = minq
i=1{Vi} are:

Optimization Problem 3.3 (Pointwise minimum ROA):

maxβ over s10, s1i, s8i, s9i, s0ij ∈ Σn, Vi ∈ Rn, Vi(0) = 0, i = 1, . . . , q

such that

Vi − l1 ∈ Σn, (3.29)

−
[
s10(β − p) +

q∑

i=1

s1i(Vi − 1) + 1

]
∈ Σn, (3.30)

−
(
(1 − Vi)s8i + ∂Vi

∂x
fs9i + l2

)
−

q∑

j=1
j 6=i

s0ij(Vj − Vi) ∈ Σn. (3.31)

There are 2q + 1 SOS constraints for this optimization problem.
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3.1.4 Examples

In this subsection, we present three examples to illustrate our methods of enlarging

provable regions of attraction. The first two examples are two state systems, where their

exact stability boundaries are known and can be easily shown on phase portraits. We shall

benchmark inner bounds on the region of attraction obtained with our methods against the

exact stability boundaries. The third example is a three state system whose exact stability

boundary is not known. Here, it is certainly more convenient to describe inner bounds on

region of attraction for this system using level sets of Lyapunov functions.

3.1.4.1 Example 1 - Van der Pol equations

The system is

ẋ1 = −x2

ẋ2 = x1 + (x2
1 − 1)x2.

(3.32)

It has an unstable limit cycle and a stable origin. The problem of finding its region of

attraction have been studied extensively, for example, in [8, 11, 6]. More recently, [24]

uses SOS programming and polynomial Lyapunov functions to find a provable region of

attraction for this system. The region of attraction for this system is the region enclosed

by its limit cycle, which can be easily obtained from the numerical solution of the ODE.

However, our goal is to use Lyapunov functions. Initially, p is chosen to be

p(x) = xT




3.78e-01 −1.37e-01

−1.37e-01 2.78e-01



x , (3.33)

whose level set at β = 1 is an ellipsoid that almost touches the limit cycle (see Figure 3.2).

The results of optimization problem 3.1 for 2nd, 4th and 6th degree single Lyapunov

functions are listed in Table 3.1. Figure 3.3 shows the limit cycle and the level sets of the
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Figure 3.2. VDP: Limit cycle and level set p(x) = 1

certifying Lyapunov functions. The dashed ellipse is the level set p(x) = β, but only for

β = 0.91. With the exception of degree 4, these results compare favorably with the results

from [24]. For 8th and 10th degree single Lyapunov functions, we were unsuccessful in

getting a β that is larger than from the 6th degree V . This is likely due to the non-convex

nature of the problem, namely constraint (3.16), which is made worse with the increase

in the number of variables for high degree V ’s. Since PENBMI is a local BMI solver, the

optimization generally returns a local maxima instead of the global maxima.

Table 3.1. VDP: Single Lyapunov function

degree of total no. of
V s6 s8 s9 β decision variables

2 0 2 0 0.593 13
4 2 2 0 0.659 57
6 4 2 0 0.909 166
8 6 2 0 0.695 392

10 8 2 0 0.833 795
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Figure 3.3. VDP: Provable ROA using single Lyapunov functions
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Figure 3.4. VDP: Provable ROA using pointwise max of two polynomials
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Table 3.2. VDP: maxq
i=1{Vi}

degree of total no. of
q V s6i s8i s9i s0ij β decision variables

2 2 0 2 0 2 0.754 38
2 4 2 2 0 2 0.928 120
2 6 4 2 0 2 1.027 338

3 2 0 2 0 2 0.754 73
3 2 0 4 2 4 0.824 265

On the other hand, if we use optimization problem 3.2 to search for the pointwise

maximum of two fixed degree V ’s, we get much improved results (see Table 3.2). For

example, with two quartic V ’s we get slightly better β than a single 6th degree V (0.928 vs

0.909), with the advantage of fewer decision variables (120 vs 166). For the same degree,

the pointwise maximum of two V ’s consistently gives much better result than a single V .

As we can see in Figure 3.4, the level set of pointwise maximum of two 6th degree V ’s

almost approaches the limit cycle. These results compare very favorably with [6] and [24],

and compared with the latter, require fewer number of decision variables.

In the pointwise maximum of two 6th degree V ’s, it is interesting to observe how the

two V ’s interact. Figure 3.5 shows that for V1, its level set (solid red lines) is disjointed

- there is a set inside the limit cycle and two “islands” outside the limit cycle. Inside the

“islands”, V̇1 6< 0, but the “islands” are excluded by V2 (dashed green line) as V2 > V1

in those places. As a result, the composite level set of {x | max{V1, V2} ≤ 1} satisfies the

conditions in Lemma 3.1, but the set {x |V1(x) ≤ 1} does not. Since the shape of the level

set {x |V2(x) ≤ 1} looks like the limit cycle, it might be tempting to assume that this level

set is a region of attraction. Figure 3.6 refutes this assumption – inside the level set, points

that are V̇2 < 0 are plotted as (•), while points that are V̇2 ≥ 0 are plotted as (+). As

we can see, V̇2 is not negative everywhere inside {x |V2(x) ≤ 1} \ {0}, so the level is a

not a region of attraction. In the pointwise maximum of V1 and V2, V2 plays the role of a
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Figure 3.5. VDP: Level sets of two 6th degree polynomials at V1, V2 = 1

barrier function to eliminate the “islands” of V1. This is further illustrated in Figure 3.7,

which shows the level sets of V1 and V2 for different values of the level set. For V1 and V2

less than 0.525, V1 > V2, so the level set of V consists entirely of the level set of V1 only.

At V1 ≈ 0.525, the “islands” start appearing and their size grow as the level set value is

increased. These “islands” are excluded because V2 > V1 in these regions.

Although the pointwise maximum of two polynomials yields much better results us-

ing less decision variables, the pointwise maximum of three polynomials does not have the

same benefits. For the same degrees of the SOS multipliers, the pointwise maximum of

three quadratic polynomials only yields the same result as the pointwise maximum of two

quadratic polynomials (see the first row and the 2nd last row of Table 3.2). Closer exami-

nation of the three polynomials reveals that one of the polynomial is redundant, e.g. it is

either the same as one of the other two or its level set is much bigger than the other two,
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i.e. no part of its level set is used in the pointwise maximum. To get better results for

pointwise maximum of three quadratic polynomials, we have to increase the degrees of the

SOS multipliers, however, this increases the number of decision variables as well (see the last

row of Table 3.2). For this case, we obtained a larger β value than the pointwise maximum

of two quadratic polynomials, but this value is smaller than the pointwise maximum of two

quartic polynomials and it uses about twice as many decision variables. Figure 3.8 shows

provable ROA for pointwise maximum of two and three polynomials.

The p in (3.33) is chosen so that when β = 1, the set {x | p(x) ≤ 1} is a good approx-

imation of the limit cycle. As such, it is not surprising that when β ≈ 1 is obtained, the

corresponding provable ROA approaches the limit cycle. What if another p(x) is used?

Suppose p is chosen to be

p2(x) = xT




2.78e-01 1.37e-01

1.37e-01 3.78e-01



x. (3.34)

We tried to fit the largest level set of p2(x) into the level set of the pointwise maximum of

two quadratic V ’s using p, and we get β = 0.323. When we re-run the optimization (3.24)

– (3.26) for a new pointwise maximum of two quadratic V ’s using p2, we get β = 0.347.

This shows that for any chosen shape factor (p or p2), the optimization is able to find the

best solution and that p is not specially chosen to give good result for our optimization.

Figure 3.9 shows provable ROAs using p2 and pointwise maximum of two polynomials

of degrees 2, 4 and 6. For the degree 6 V ’s, the optimization pushes its level set against the

limit cycle, which is unexpected as the corresponding level set of p2 is much smaller than

the limit cycle.
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3.1.4.2 Example 2 - Hahn’s example

This example is from Hahn [12], and is studied in [8, 11, 6].

ẋ1 = −x1 + 2x2
1x2

ẋ2 = −x2.

(3.35)

This system has an asymptotically stable origin and its exact stability region is known

to be x1x2 < 1 using Zubov’s method, which involves solving partial differential equations.

The Lyapunov function obtained using Zubov’s method has exponential and rational terms:

V (x) = −1 + exp
(
−x2

2
2 − x2

1
2(1−x1x2)

)
.

We are interested to see how the results of optimization problems 3.1 and 3.2 using

polynomials compare with the exact stability boundary. For this example, p is chosen to be

p(x) = xT



 14.47 18.55

18.55 26.53



x. (3.36)

The contour of p = 10 and the stability boundary x1x2 = 1 is shown in Figure 3.10.
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Figure 3.10. Hahn’s example: Stability boundary x1x2 = 1 and level set p = 10
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We attempted optimization problems 3.1 and 3.2 using polynomial V ’s of degrees 2, 4

and 6. The results are shown in Table 3.3. In terms of β, the pointwise maximum of two

quadratic V ’s easily beats a single V of degrees 2, 4 and 6. The pointwise maximum of two

6th degree V ’s achieves a β value that is 3 times larger than a single quadratic V . Since p

is quadratic, this translates to
√

3 ≈ 1.73 or 73% larger in any direction of p’s level set.

Table 3.3. Hahn’s example

degree of total no. of
q V s6i s8i s9i s0ij β decision variables

1 2 0 2 0 - 10.1 13
1 4 2 2 0 - 13.0 57
1 6 4 2 0 - 20.4 166

2 2 0 2 0 2 23.3 38
2 4 2 2 0 2 24.3 120
2 6 4 2 0 2 30.4 338

Figures 3.11 and 3.12 show provable regions of attraction using our method and for

comparison purposes, the dashed-dotted ellipse is a region of attraction obtained by Davison

[8] using numerical methods to search for a quadratic V . From the figures, we can see that

we are able to enlarge provable regions of attraction when using higher degree Lyapunov

functions and pointwise maximum of polynomials.

For that particular choice of p in (3.36), even though we have managed to enlarge

provable regions of attraction, there are still regions near the origin that are not covered by

these provable regions of attraction. To cover the remaining regions as close to the stability

region x1x2 < 1 as possible, we shall use multiple p’s. First, we start with

p0(x) = xT



 40 0

0 1



x. (3.37)

and generate multiple p’s by rotating p0 every 3 degrees from 0 to 180 degrees. For each p,

we run optimization problems 3.1 and 3.2 using single quartic Lyapunov functions and the

pointwise maximum of two quartic polynomials.
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Figure 3.11. Hahn’s example: Provable ROA using single Lyapunov functions
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Figure 3.12. Hahn’s example: Provable ROA using pointwise max of two polynomials
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Figure 3.13. Hahn’s example: Multiple ROAs using single Lyapunov functions
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Figure 3.14. Hahn’s example: Multiple ROAs using pointwise max of two polynomials
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Figures 3.13 and 3.14 show the results obtained from multiple p’s. Each closed curve in

the figures corresponds to a provable region of attraction obtained by a particular p. We are

able to cover larger stability regions using multiple p’s: any point starting inside the union

of all such regions will converge to the origin, albeit using different Lyapunov functions to

prove asymptotic stability.

3.1.4.3 Example 3 - 3D example

This example is taken from [22] and has been studied in [8] and [6]. The system has a

3-dimensional unstable limit cycle and an asymptotically stable origin.

ẋ1 = −x2

ẋ2 = −x3

ẋ3 = −0.915x1 + (1 − 0.915x2
1)x2 − x3

(3.38)

The largest provable region of attraction obtained with methods developed in Davison [8],

using a quadratic Lyapunov function, is β = 1.0, with

p(x) := xT





12.5 −8.1 3.0

−8.1 20.8 −8.5

3.0 −8.5 13.4




x. (3.39)

We shall use the same p(x) to enlarge a provable region of attraction using optimization

problem 3.1 and 3.2. Interestingly, using a single quadratic Lyapunov function, we obtain

β = 2.76. Pointwise maximum of two quadratic V ’s yields β = 3.16. Using a single quartic

Lyapunov function, we obtained β = 6.32. Figure 3.15 shows a slice (the x2 − x3 plane

at x1 = 0) of this provable region of attraction, i.e. all points starting inside the region

{x | p(x) ≤ 6.32} will converge to the origin. The two stars on the plot, which are just

outside this region, are initial conditions whose trajectories diverge away from the origin.
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Table 3.4. 3D Example

degree of p (3.39) p2 (3.40) total no. of
q V s6i s8i s9i s0ij β β decision variables

1 2 0 2 0 - 2.76 8.16 25
2 2 0 2 0 2 3.16 9.19 81
1 4 2 2 0 - 6.32 14.59 200
2 4 2 2 0 2 6.41 16.17 412

These two points show that with respect to enlarging the estimate of the region of attraction

in this direction (defined by p), the result is not conservative.

From Figure 3.15, the level set of that single quartic V indicates that it is approaching

the stability boundary, so it would be difficult for the pointwise maximum of two quartic

V ’s to improve upon set. Using optimization problem 3.2, the pointwise maximum of two

quartic V ’s yield only a marginally larger β of 6.41. For illustrative purposes only, if we

pick another p, such as

p2(x) := xT





33.1 −28.6 4.88

−28.6 56.7 −29.2

4.88 −29.2 36.7




x, (3.40)

we might be able to see the improvement from using composite Lyapunov functions. Table

3.4 summarizes the degrees of the polynomial used and the results from using p and p2.

With p2, the pointwise maximum of two quartic V ’s show some improvement over single V .

Figure 3.16 shows a slice (the x2 − x3 plane at x1 = 0) of this provable region of attraction

with p2. From the figure, it might appear that the level set of p2 = 16.17 does not touch

the level set of pointwise max of two quartic V ’s, but in fact these two level sets do touch,

but it cannot be seen in this sectional view.
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3.2 Attractive Invariant Sets

For a system whose equilibrium point is not asymptotically stable, there might still be

an attractive invariant set containing the equilibrium point, i.e. for points starting inside

the set, their trajectories will remain in the set, and for points starting outside the set, their

trajectories will eventually enter this set and remain inside. We are interested in finding a

tight outer bound for this attractive invariant set, I. Again, we introduce a variable sized

region Pβ such that I ⊆ Pβ . By minimizing β, we are tightening the outer bound for I.

The problem of finding an outer bound of an attractive invariant set for system (3.1)

can be posed as the following optimization problem:

Lemma 3.3. If there exists V ∈ Rn, ǫ > 0 and β > 0 such that the following optimization

is feasible

min
V ∈Rn,ǫ>0

β

V (x) > 0 ∀x ∈ R
n\{0}, V (0) = 0, and radially unbounded, (3.41)

{x ∈ R
n |V ≤ 1} ⊆ {x ∈ R

n | p(x) ≤ β} (3.42)

{x ∈ R
n |V (x) ≥ 1} ⊆ {x ∈ R

n | ∂V
∂x
f(x) ≤ −ǫ} , (3.43)

then I := {x ∈ R
n |V ≤ 1} is an attractive invariant set for (3.1), and is contained in the

set Pβ := {x ∈ R
n | p(x) ≤ β}.

Proof. The derivative of V along the trajectory, V̇ = ∂V
∂x
f(x), is strictly negative on the

boundary of I, so all trajectories starting inside I can never leave it, which makes I an

invariant set. To show that a solution starting outside I eventually enters I in a finite time,

suppose V (x(0)) = c, with c > 1. Note that V̇ ≤ −ǫ < 0 on the set {x ∈ R
n |V (x) ≥ 1}, so
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V (x(t)) ≤ V (x(0))− ǫt = c− ǫt. As such, V (x(t)) will decay to the value 1 within the time

interval (0, (c− 1)/ǫ].

Moreover, since V is positive definite and radially unbounded by (3.41), the level sets

{x ∈ R
n |V ≤ c} for all c ≥ 1 are invariant and bounded, so condition (3.43) guarantees

that the solution trajectory remains bounded and exists for all time, and V (x(t)) eventually

becomes ≤ 1.

We shall present the SOS formulation for the case of V (x) = minq
i=1{Vi(x)}, and omit

the case for the pointwise maximum as it is similar.

Let l1(x) be a positive definite polynomial, and applying generalized S-procedure to

each of the constraints (3.41)–(3.43), we have the following sufficient conditions for the

finding a tight outer bound for an attractive invariant set:

Optimization Problem 3.4 (Attractive Invariant Set):

minβ over Vi ∈ Rn, Vi(0) = 0, s1i, s2i, s0ij ∈ Σn,

ǫ > 0, i = 1, . . . q

such that

Vi − l1 ∈ Σn, (3.44)

(β − p) − s1i(1 − Vi) ∈ Σn, (3.45)

− ǫ− ∂Vi

∂x
f − s2i(Vi − 1) −

q∑

j=1
j 6=i

s0ij(Vj − Vi) ∈ Σn. (3.46)

There are 3q SOS constraints for this optimization problem. Note that the above pre-

sentation is equally valid for a single V .
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3.2.1 Example

The system is a Van der Pol oscillator with a stable limit cycle.

ẋ1 = x1(1 − x2
1) − x2

ẋ2 = x2(1 − x2
2) + x1.

(3.47)

We want to find a tight outer bound on the attractive invariant set using optimization

problem 3.4 and p(x) = x2
1 +x2

2. Table 3.5 shows the degree of the decision polynomials and

the bound achieved for various V ’s. Figure 3.17 shows the limit cycle and the boundaries

of the derived attractive invariant sets. For a single quartic V , this boundary is very close

to the stable limit cycle.

Table 3.5. Attractive Invariant Set

degree of total no. of
q V s0ij s1i s2i β decision variables

1 2 - 0 2 2.000 19
2 2 2 0 2 1.833 47
1 4 - 0 2 1.634 63

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

limit cycle

x
1

x
2

n
V
 = 2

q = 2, n
V
 = 2

n
V
 = 4

Figure 3.17. Attractive invariant sets for various V ’s

As a side note, we also attempt to find an attractive invariant set for the Van der Pol

oscillator with a stable limit cycle, of the form similar to (3.32), but we were unsuccessful.

44



3.3 Enlarging a provable ROA for Uncertain Systems

Consider a nonlinear system with uncertain dynamics

ẋ = f(x, δ) (3.48)

and an apriori constraint on uncertainty: N(δ) ≥ 0. f is a n-vector of elements of Rn+nδ
,

i.e. f is a n-vector of polynomials in (x, δ). We restrict our attention to f such that the

equilibrium point x̄ = 0 that does not depend on δ, i.e.

f(x̄, δ) = 0 ∀δ such that N(δ) ≥ 0.

We want to search for a parameter-dependent Lyapunov function V (x, δ) to maximize

β so that for each δ satisfying N(δ) ≥ 0,

V (·, δ) is positive definite, (3.49)

the set {x |V (x, δ) ≤ 1} is bounded,

{x | p(x) ≤ β} ⊆ {x |V (x, δ) ≤ 1}, (3.50)

{x |x 6= 0, V (x, δ) ≤ 1} ⊆ {x | ∂V
∂x
f(x, δ) < 0}. (3.51)

Note that for each fixed δ̄ such that N(δ̄) ≥ 0, the above conditions (3.49) – (3.51) are

exactly the same as (3.5) – (3.7) which are a direct application of Lemma 3.1. Hence,

the set {x |V (x, δ̄) ≤ 1} is a region of attraction (ROA) for the system (3.48) with that

particular δ̄.

The following lemma is useful in rewriting the conditions (3.49) – (3.51) with the qualifier

“for each δ satisfying N(δ) ≥ 0” into plain set containment conditions.

Lemma 3.4. For each ȳ satisfying f3(ȳ) ≤ 0,

A1 := {x | f1(x, ȳ) ≤ 0} ⊆ {x | f2(x, ȳ) ≤ 0} =: A2 (3.52)
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iff

B1 := {(x, y) | f1(x, y) ≤ 0, f3(y) ≤ 0} ⊆ {(x, y) | f2(x, y) ≤ 0} =: B2 (3.53)

Proof. (⇒) Let (x̄, ȳ) ∈ B1, hence f3(ȳ) ≤ 0 and f1(x̄, ȳ) ≤ 0. Obviously ȳ satisfies the

hypothesis of (3.52), hence x ∈ A1, so x ∈ A2, i.e. f2(x, y) ≤ 0, so (x, y) ∈ B2.

(⇐) Take any ȳ such that f3(ȳ) ≤ 0. Let x ∈ A1, so f1(x, ȳ) ≤ 0. (x, ȳ) ∈ B1 ⇒ (x, ȳ) ∈

B2, so f2(x, ȳ) ≤ 0. Hence x ∈ A2.

3.3.1 Single Parameter-Dependent Lyapunov Function

If we restrict ourselves to searching for polynomial V (x, δ) and if N(δ) ≥ 0 is a polyno-

mial constraint, we can apply Lemma 3.4 and P-satz to (3.49) – (3.51) to get the following

sufficient conditions:

Optimization Problem 3.5 (Parameter-dependent single Lyapunov function):

maxβ over V ∈ Rn+nδ
, s1, . . . , s6 ∈ Σn+nδ

such that

V (x, δ) − l1(x) − s1N(δ) ∈ Σn+nδ
(3.54)

(1 − V (x, δ)) − s2(β − p(x)) − s3N(δ) ∈ Σn+nδ
(3.55)

− ∂V
∂x
f(x, δ)s6 − l2(x) − s4(1 − V ) − s5N(δ) ∈ Σn+nδ

(3.56)

Here, Σn+nδ
denotes the set of SOS polynomials in (x, δ). Since constraint (3.54) implies

that for each δ such that N(δ) ≥ 0, V (x, δ) is underbounded by positive definite function

l1(x), the set {x ∈ R
n |V (x, δ) ≤ 1} is bounded for each δ.
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3.3.2 Parameter-Dependent Composite Lyapunov Function

When the composite Lyapunov function V (x, δ) = maxq
i=1{Vi(x, δ)} is used, the follow-

ing are sufficient conditions to find such a V :

Optimization Problem 3.6 (Parameter-dependent composite Lyapunov func-

tion):

maxβ over Vi ∈ Rn+nδ
, s0ij , s1i, . . . , s6i ∈ Σn+nδ

such that

Vi(x, δ) − l1(x) − s1iN(δ) ∈ Σn+nδ
(3.57)

(1 − Vi(x, δ)) − s2i(β − p(x)) − s3iN(δ) ∈ Σn+nδ
(3.58)

− ∂Vi

∂x
f(x, δ)s6i − l2(x) − s4i(1 − Vi) − s5iN(δ) −

q∑

j=1
j 6=i

s0ij(Vi − Vj) ∈ Σn+nδ
(3.59)

There are 3q SOS constraints for this optimization problem.

Note that constraint (3.59) has the highest degree among (3.57) – (3.59). When n+ nδ

and the degree of (3.59) are large, the large number of additional variables in the affine

subspace can make optimizing (3.59) difficult. For example, when n = 3, nδ = 1, and

degree 2d = 8, N1 = 1990 (see Table 2.1), which is considered a big computational problem

for the present day computer.

We propose an ad-hoc two step process to reduce the number of decision variables for

the case of a single uncertain parameter δ:

Step One:

Constraint (3.49) implies that V (0, δ) = 0, so one possible parameterization for V (x, δ) is

zT
1 P1z1+δ(zT

2 P2z2)+δ
2(zT

3 P3z3)+ · · · , where zi(x) are vectors of monomials of x. With this

parameterization of V (x, δ), we will retain constraints (3.57) and (3.58) for the optimization
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problem, but modify (3.59) as follows: grid the set {δ |N(δ) ≥ 0} with m points and solve

(3.59) for each value of δ̄k. Using the same example, N1 is now reduced to 126×m because

δ does not enter as a variable, so there is a reduction in both n and 2d. The gridded

optimization problem below will have 2q SOS constraints in (x, δ) plus mq SOS constraints

in x.

Optimization Problem 3.7 (Parameter-dependent gridded composite Lya-

punov function):

maxβ over Vi ∈ Rn+nδ
, s1i, s2i, s3i ∈ Σn+nδ

, s0ijk, s4ik, s6ik ∈ Σn, k = 1, . . . ,m

such that

Vi(x, δ) − l1(x) − s1iN(δ) ∈ Σn+nδ
(3.60)

(1 − Vi(x, δ)) − s2i(β − p(x)) − s3iN(δ) ∈ Σn+nδ
(3.61)

− ∂Vi(x,δ̄k)
∂x

f(x, δ̄k)s6ik − l2(x) − s4ik(1 − Vi(x, δ̄k))

−
q∑

j=1
j 6=i

s0ijk(Vi(x, δ̄k) − Vj(x, δ̄k)) ∈ Σn (3.62)

Step Two:

After V (x, δ) is found and fixed, the second step is to solve (3.59) to obtain SOS multi-

pliers s0ij , s4i, s5i, s6i ∈ Σn+nδ
. With V (x, δ) fixed, (3.59) is longer bilinear in the decision

polynomials and can be easily formulated as an SDP.

3.3.3 Parameter Independent Lyapunov Function

We can also search for δ independent polynomial Lyapunov function V (x) for the un-

certain system (3.48). We would expect that provable region of attraction {x |V (x) ≤ 1}

would be smaller than provable region of attraction given by V (x, δ). However, a δ inde-
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pendent polynomial Lyapunov function allows for arbitrarily fast varying δ(t) whereas the

parameter-dependent V (x, δ) does not.

The conditions for enlarging a provable region of attraction are:

Optimization Problem 3.8 (Parameter independent single Lyapunov func-

tion):

V (x) is positive definite, (3.63)

the set {x |V (x) ≤ 1} is bounded,

{x | p(x) ≤ β} ⊆ {x |V (x) ≤ 1}, and (3.64)

for each δ satisfying N(δ) ≥ 0, {x |x 6= 0, V (x) ≤ 1} ⊆ {x | ∂V
∂x
f(x, δ) < 0} . (3.65)

Again, applying P-satz to (3.63) – (3.65), we have the following sufficient conditions:

maxβ over V ∈ Rn, s2 ∈ Σn, s4, s5, s6 ∈ Σn+nδ

such that

V (x) − l1(x) ∈ Σn (3.66)

(1 − V (x)) − s2(β − p(x)) ∈ Σn (3.67)

− ∂V
∂x
f(x, δ)s6 − l2(x) − s4(1 − V ) − s5N(δ) ∈ Σn+nδ

(3.68)

When the composite Lyapunov function V (x) = maxq
i=1{Vi} is used, the following are

sufficient conditions to find such a V :

Optimization Problem 3.9 (Parameter independent composite Lyapunov

function):

maxβ over V ∈ Rn, Vi(0) = 0, s2i ∈ Σn, s0ij , s4i, s5i, s6i ∈ Σn+nδ

such that
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Vi(x) − l1(x) ∈ Σn (3.69)

(1 − Vi(x)) − s2i(β − p(x)) ∈ Σn (3.70)

− ∂Vi

∂x
f(x, δ)s6i − l2(x) − s4i(1 − Vi) − s5iN(δ) −

q∑

j=1
j 6=i

s0ij(Vi − Vj) ∈ Σn+nδ
(3.71)

There are 3q SOS constraints for this optimization problem.

3.3.4 Examples

3.3.4.1 Example 1 - ROA of Uncertain 2-D Van der Pol

We revisit the 2-D Van der Pol equations, but with uncertainty in the ẋ1 equation.

Again, the same p(x) as in (3.33) is used.

ẋ1 = −(1 − 0.2δ)x2 δ ∈ [−1, 1]

ẋ2 = x1 + (x2
1 − 1)x2 (3.72)

Table 3.6 shows the β obtained for various fixed and known δ ∈ [−1, 1] using a single

quartic V (x) for optimization problem 3.1, and using pointwise maximum of two quartic

V (x)’s for optimization problem 3.2. Since δ is known exactly, for a given degree of V ,

the smallest β value along a row in the table would be an upper bound for the achievable

β using either parameter-dependent or independent Lyapunov functions for the uncertain

system (3.72), where δ is not known.

We chose to search over a single V (x, δ) of the form V (x, δ) = zT
1 P1z1 + δ(zT

2 P2z2),

where zT
1 P1z1 is a quartic polynomial in x only, and zT

2 P2z2 is a quadratic polynomial

Table 3.6. Uncertain VDP: Measure of ROA for various δ

q δ -1.000 -0.667 -0.333 0.000 0.333 0.667 1.000

1 β 0.600 0.633 0.656 0.659 0.660 0.660 0.659
2 β 0.836 0.866 0.897 0.928 0.957 0.981 0.998
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in x only. Using this form and optimization problem 3.6, we obtain β = 0.600, which is

very close to the smallest β in Table 3.6. Figure 3.18 shows provable regions of attraction,

{x |V (x, δ) ≤ 1}, for various values of δ and the corresponding limit cycles. Note that

{x | p(x) ≤ β = 0.600} (the dashed ellipse) is contained in these provable ROAs.

For pointwise maximum of two quartic V (x, δ) of the same form, β = 0.806 is obtained,

and Figure 3.19 shows these provable ROAs. Interestingly for some δ values, there are

some points of the provable ROAs that are outside the limit cycles of other δ values. This

demonstrates that provable ROAs from parameter-dependent Lyapunov functions are able

to capture the different stability regions due to parameter variation.

The pointwise maximum result is obtained using the two step process described in

Section 3.3.2. First, 7 evenly spaced grid points are chosen in δ ∈ [−1, 1] for gridded

optimization problem 3.7, using V and SOS multipliers with degrees listed in the second

row of Table 3.7, resulting in a 6th degree constraint (3.62) in x. After the pair of Vi(x, δ) is

found, we verify that the original optimization problem 3.6 is feasible by attempting to find

the SOS multipliers s0ij , s4i, s5i, s6i ∈ Σn+nδ
in constraint (3.59). A 6th degree constraint

(3.59) returns infeasible results because the variations in s0ijk, s4ik, s6ik over δ are too large

to be fitted with low degree SOS multipliers as listed in the third row of Table 3.7. An 8th

degree constraint (3.59) in (x, δ) is needed to obtain feasible result (see row 4 of Table 3.7).

Using parameter independent V (x), we obtain β = 0.545 for a single quartic V using

optimization problem 3.8 and β = 0.772 for pointwise maximum of two quartic V ’s using

optimization problem 3.9. These β values are smaller than those from V (x, δ), which is

expected.
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Table 3.7. Uncertain VDP: V (x, δ) and V (x)

Optimization degree of total no. of
Problem q V s0 s1 s2 s3 s4 s5 s6 β decision variables

V (x, δ) 3.5 1 4 - 2 2 4 2 4 0 0.600 193

-

V (x, δ̄) 3.7 2 4 2 2 2 4 2 - 0 0.806 607
V (x, δ) (3.59) 2 4 2 - - - 2 4 0 NaN 146
V (x, δ) (3.59) 2 4 4 - - - 4 6 2 0.806 473

V (x) 3.8 1 4 - - 2 - 2 4 0 0.545 104
V (x) 3.9 2 4 2 - 2 - 2 4 0 0.772 223
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3.3.4.2 Example 2 - ROA of Uncertain 3-D system

This example is (3.38) with uncertainties in the ẋ1 and ẋ2 equations. Again, the same

p(x) as in (3.39) is used.

ẋ1 = − x2 − 0.45(1 + δ)x3 δ ∈ [−1, 1]

ẋ2 = − x3 − 0.45(1 + δ)x2

ẋ3 = − 0.915x1 + (1 − 0.915x2
1)x2 − x3

(3.73)

Table 3.8 shows the β values obtained with a single quartic V using optimization problem

3.1 and with pointwise maximum of two quartic V ’s using optimization problem 3.2, for

known and fixed δ. To give the reader an idea of how much variation in the vector field for

the uncertain system is, Figure 3.21 shows provable regions of attractions {x |V (x) ≤ 1}

for various fixed values of δ on the x2 − x3 plane at x1 = 0.

For parameter-dependent Lyapunov functions, we choose to search over quartic V (x, δ)’s

of the form V (x, δ) = zT
1 P1z1 + δ(zT

2 P2z2), where zT
1 P1z1 is a quartic polynomial in x only,

and zT
2 P2z2 is a quadratic polynomial in x only. A single quartic V (x, δ) yields β = 2.93

using optimization problem 3.6, while the pointwise maximum of two quartic V (x, δ) yields

β = 3.73, which is quite close to the smallest value of β = 4.15 in Table 3.8.

Again, we use gridded optimization problem (3.7) for the pointwise maximum, with 7

evenly spaced grid points chosen in δ ∈ [−1, 1] to solve for a 6th degree constraint (3.62) (see

Table 3.9 for the degrees of V and SOS multipliers used). After finding the pair of V (x, δ),

we need to verify that the original optimization problem 3.6 is feasible by attempting to

Table 3.8. Uncertain 3D example: Measure of ROA for various δ

q δ -1.000 -0.667 -0.333 0.000 0.333 0.667 1.000

1 β 6.32 11.60 13.55 13.41 11.60 8.41 4.16
2 β 6.40 11.84 13.76 13.57 11.61 8.50 4.15
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Table 3.9. Uncertain 3D example: V (x, δ)

Optimization degree of total no. of
Problem q V s0 s1 s2 s3 s4 s5 s6 β decision variables

V (x, δ) 3.5 1 4 - 2 2 4 2 4 0 2.93 559

-

V (x, δ̄) 3.7 2 4 2 2 2 4 2 - 0 3.73 2299
V (x, δ) (3.59) 2 4 2 - - - 2 4 0 NaN 350
V (x, δ) (3.59) 2 4 4 - - - 4 6 2 NaN 1353
V (x, δ) (3.59) 2 4 6 - - - 6 8 4 3.73 4879

V (x) 3.8 1 4 - - 2 - 2 4 0 NaN 417
V (x) 3.9 2 4 2 - 2 - 2 4 0 NaN 857

find the SOS multipliers s0ij , s4i, s5i, s6i ∈ Σn+nδ
in constraint (3.59). We need to use a

10th degree constraint (3.59) in order to obtain feasibility, as lower degree constraints are

not feasible. See rows 3 – 5 of Table 3.9 for the degrees of V and SOS multipliers used. Had

we done a direct optimization of problem 3.6, constraint (3.59) would be 10th degree in 4

variables and we would have to deal with 7000 decision variables in the affine subspace of

this constraint alone. Most likely, we would not have found a feasible solution.

No feasible solution was found for parameter independent quartic V (x), which points

to the usefulness of the parameter-dependent V (x, δ).
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Figure 3.21. Provable ROAs using quartic max{V1(x), V2(x)} for fixed and known δ
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3.4 Computation Statistics

In Section 3.1, we presented optimization problems that enlarge provable regions of

attraction for polynomial systems and have given three examples to illustrate our meth-

ods. Unfortunately, there are several steps which make our approach a sufficient condition:

searching for polynomial V ’s only, limiting the degrees of V and the SOS multipliers, and

searching over non-convex decision variables space. Given these deficiencies, we want to

investigate, in this section, how well the optimization problems and the bilinear solver per-

form in practice with respect to arbitrary data and increasing problem size. A benchmark

example, inspired by Example 5 of [8], is chosen because the system has a known region of

attraction and can be extended easily to any number of states. Let

ẋ = −Ix+ (xTBx)x (3.74)

where x(t) ∈ R
n, and B ∈ R

n×n, B ≻ 0.

This example has a special structure because the set {x ∈ R
n |xTBx < 1} is the

exact region of attraction, which can be easily verified by noting that for each xi, ẋi =

(−1+xTBx)xi. For all x(t) such that x(t)TBx(t) < 1, each ẋi differential equation is stable,

so x(t) decreases with time, while remaining inside the set {x |xTBx < 1}. Eventually, x(t)

will eventually decay to zero. Conversely, for any x(t) such that x(t)TBx(t) > 1, each ẋi is

unstable, so x(t) diverges away from the origin.

Let the set that we are interested in enlarging be Pβ := {x ∈ R
n | p(x) ≤ β}, where

p(x) := xTRx and R ∈ R
n×n, R ≻ 0. For randomly selected positive definite B and R,

we want to find how tight can we make Pβ fit inside this region of attraction. For ease of

analysis, we use the closure of this region of attraction, i.e. {x ∈ R
n |xTBx ≤ 1}, so the

containment condition is
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{x ∈ R
n |xTRx ≤ β} ⊆ {x ∈ R

n |xTBx ≤ 1} (3.75)

Applying S-procedure to (3.75), the containment condition (3.75) holds iff there exists

a λ ≥ 0 such that

(1 − xTBx) − λ(β − xTRx) ≥ 0




1

x





T 


1 − λβ 0

0 λR−B








1

x



 ≥ 0

⇔ 1 − λβ ≥ 0 and λR−B � 0

The largest λ such that 1− λβ ≥ 0 is λ = 1
β
. Substituting λ = 1

β
into λR−B � 0, we have

1

β
R−B � 0

1

β
I −R−

1
2BR−

1
2 � 0

1

β
≥ λmax(R

−
1
2BR−

1
2 )

So the best β that can be obtained from the optimization of this example is β =

[λmax(R
−

1
2BR−

1
2 )]−1, or β × λmax(R

−
1
2BR−

1
2 ) = 1.

Since the exact region of attraction for this example is {x ∈ R
n |xTBx < 1}, a single

quadratic Lyapunov function is all that is needed. We will use optimization problem 3.1

to search for the Lyapunov function. For each n, the size of the problem, we perform 100

trials where random, positive definite B and R were picked. Each B and R has eigenvalues

exp(2ri) where each ri is picked from a normal distribution with zero mean and unit variance.

For each trial, we run the optimization 3 times, so for each n, there is a total of 300 runs.

Table 3.10 shows the results of the test.
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Table 3.10. Computation statistics for the benchmark example

Excluding unsuccessful runs,
Number of worst case β × λmax Average time

n variables success failures over 300 runs over 100 trials per run (secs)

2 13 298 2 0.99995 1.00000 0.70
3 25 296 4 0.90955 0.99984 1.12
4 48 297 3 0.07687 0.99999 2.14
6 157 297 3 0.99997 0.99998 11.18
8 420 300 0 0.99989 0.99992 99.69

A run is considered successful if the solver returns the message “No problems detected”,

even though the results might not be the global optimum. A run is classified as a failure

if the solver either returns “Infeasible”, “Numerical problems” or “Maximum number of

iterations exceeded”. The latter means the solver fails to converge to the required accuracy

after the maximum number of iterations is reached (in this case, 250 iterations). Except

for the case of n = 6, there are no trials that fail for all 3 runs. For the case of n = 6,

one trial failed in all 3 runs because that particular randomly generated P and B lead to

poor numerical conditioning in the optimization problem. A more relaxed bound on the

entries of the decision variables is used to circumvent this problem. When those failed

runs were re-run, we did not encounter any problems and we obtained β values such that

β × λmax(R
−

1
2BR−

1
2 ) ≈ 1.

Among the successful runs, we are interested in how close the results are to the optimal

value. Under column “worst case β × λmax over 300 runs” we have the worst case β ×

λmax(R
−

1
2BR−

1
2 ) value among the 300 runs that are successful. The next column shows

the worst case β × λmax over 100 trials, which means for each trial, take the maximum β

over 3 runs, and present the worst trial result among the 100 trials. Since the results of this

column are ≈ 1, this indicates that repeated runs of the same problem eventually lead to the

optimal solution for this example. The reason why repeated runs lead to different results is

because PENBMI starts the bilinear optimization with randomized initial conditions, so if
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the number of decision variables is small, the chances of an initial condition starting in the

region where the solution will converge to the global optimum is high.

For this benchmark example, we can see that even though our problem formulation

is bilinear in the decision polynomials and the bilinear solver is a local solver, the results

obtained are encouraging.

3.5 Chapter Summary

In this chapter, we presented the techniques of using sum-of-squares programming for

finding provable regions of attraction and attractive invariant sets for nonlinear systems

with polynomial vector fields. The examples presented yield results that are, practically

speaking, not conservative. Moreover, the composite Lyapunov function method has the

advantage of reducing the number of decision variables. We hope that such reductions will

enable us to apply these techniques to higher degree systems in more variables before the

curse of dimensionality renders the method impractical.

We also formulated the techniques of enlarging a provable region of attraction for polyno-

mial systems with uncertainty using both parameter-dependent and independent Lyapunov

functions. Besides the use of composite Lyapunov functions, an ad-hoc two-step optimiza-

tion process is proposed to further reduce the number of decision variables. The first step

is to solve an optimization problem in the gridded uncertain parameter space to obtain the

Lyapunov functions. This is then followed by verification of the original, ungridded problem

by computing the SOS multipliers.

Finally, we presented computation statistics of a benchmark example of enlarging its

provable region of attraction with arbitrary data and increasing problem size.
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Chapter 4

Performance Analysis

In this chapter, we study the local input-to-output gain of nonlinear systems using

sum-of-squares optimization. First, we derive an upper bound of the reachable set due to a

bounded L2 disturbance and present improvement to the upper bound using sum-of-squares

techniques. An example used in our previous work is revisited to show the improvement

in the upper bound and the tightness of this bound when compared to the lower bound

obtained by a power-like algorithm. We also consider the problem of finding an upper

bound of the reachable set due to an L2 disturbance with an L∞ bound. This problem is

of practical interest as in most situations, a disturbance has finite amplitude and energy.

The second part of this chapter derives an upper bound of the induced L2 → L2 gain for

a nonlinear system. We also propose a refinement of this induced gain by using pointwise

maximum of polynomials. Finally, we present an interesting example analyzing the induced

gain of an adaptive control system by Krstić [21] and the effects of adaptation gain on this

induced gain.
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4.1 Reachable Set with L2 Disturbances

A SOS programming-based algorithm for finding an upper bound for the reachable set

of a nonlinear system under bounded L2 disturbances was presented in [16], using a variant

of the barrier function approach introduced in [41]. Here, we show how the obtained upper

bound can usually be further improved using semidefinite programming.

Given a system of the form

ẋ = f(x,w) (4.1)

with x(t) ∈ R
n, w(t) ∈ R

nw , and f is a n-vector with elements of Rn+nw such that f(0, 0) =

0. Compute a bound on the set of points x(T ) that are reachable from x(0) = 0 under (4.1),

provided the disturbance satisfies
∫ T

0 w(t)Tw(t) dt ≤ R2, T ≥ 0. Following the Lyapunov-

like argument in [5, §6.1.1], if a continuously differentiable function V satisfies

V (x) > 0 for all x ∈ R
n\{0} with V (0) = 0, and (4.2)

∂V
∂x
f(x,w) ≤ wTw for all x ∈ R

n, w ∈ R
nw , (4.3)

then {x |V (x) ≤ R2} contains the set of points x(T ) that are reachable from x(0) = 0 for

any w such that
∫ T

0 w(t)Tw(t) dt ≤ R2, T ≥ 0. We can see this by integrating the inequality

in (4.3) from 0 to T , yielding

V (x(T )) − V (x(0)) ≤
∫ T

0
w(t)Tw(t) dt ≤ R2. (4.4)

Recalling V (x(0)) = 0, x(T ) ∈ {x |V (x) ≤ R2}. Furthermore, x(τ) ∈ {x |V (x) ≤ R2} for

all τ ∈ [0, T ], allowing us to relax the inequality in (4.3) to

∂V
∂x
f(x,w) ≤ wTw ∀x ∈ {x |V (x) ≤ R2},∀w ∈ R

nw . (4.5)

A more precise proof of this relaxation is given in Lemma 4.1 of Section 4.1.1.
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Since we’re interested in a tight upper bound for the reachable set, we introduce a

variable sized region Pβ := {x ∈ R
n | p(x) ≤ β} and require {x |V (x) ≤ R2} ⊆ Pβ while

minimizing β. The positive definite function p is chosen by the user to reflect the relative

importance of the states.

If l1(x) is a given positive definite polynomial, then the constraint x 6= 0 in (4.2) is

equivalent to l1(x) 6= 0. Usually, we take l1(x) of the form l1(x) =
∑n

j=1 ǫjx
2
j , where

ǫj are positive numbers. Applying the generalized S-procedure (Lemma 2.1) to each of

the constraints (4.2), (4.5), and the set containment condition, yields the bilinear SOS

optimization below:

Optimization Problem 4.1 (Reachable set under bounded L2 disturbances):

minβ over V ∈ Rn, V (0) = 0, s4 ∈ Σn, s10 ∈ Σn+nw

such that

V − l1 ∈ Σn, (4.6)

(β − p) − (R2 − V )s4 ∈ Σn, (4.7)

−
(
(R2 − V )s10 + ∂V

∂x
f(x,w) − wTw

)
∈ Σn+nw . (4.8)

4.1.1 Upper Bound Refinement

Optimization problem 4.1 constrains the reachability of x under L2 disturbances, but

the upper bound is a crude one: in (4.5), we require that ∂V
∂x
f(x,w) ≤ wTw for all x in

the entire region of {x |V (x) ≤ R2}, but if we subdivide {x |V (x) ≤ R2} into smaller

annular regions, we might be able to refine this upper bound. The next lemma proposes

this refinement.
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Lemma 4.1. Suppose that for k = 1, 2, . . . ,m,

∂V
∂x
f ≤ hkw

Tw on {x ∈ R
n | (k − 1)ǫ ≤ V (x) ≤ kǫ} and for all w ∈ R

nw . (4.9)

Then for any k ≤ m, the dynamic system ẋ = f(x,w) has the property: Starting from

x(0) = 0, for piecewise continuous w,

∫ T

0
wTw dt < ǫ

(
1

h1
+ · · · + 1

hk

)
⇒ V (x(T )) ≤ kǫ.

Proof. Suppose not, i.e. ∃T > 0 such that V (T ) > kǫ. By continuity of V , and V (0) = 0,

V (T ) > kǫ, there exist tj and t̂j , with 0 < t̂1 ≤ t1 < t̂2 ≤ t2 < . . . ≤ tk−1 < t̂k < T such

that for all j = 1, 2, . . . , k,

V (t̂j) = jǫ, V (tj−1) = (j − 1)ǫ, and ∀t ∈ [tj−1, t̂j ], (j − 1)ǫ ≤ V (t) ≤ jǫ. (4.10)

Now,

∫ T

0
wTw dt =

∫ t̂1

0
wTw dt+

∫ t1

t̂1

wTw dt+

∫ t̂2

t1

wTw dt+ · · · +
∫ t̂k

tk−1

wTw dt+

∫ T

t̂k

wTw dt

≥
∫ t̂1

0
wTw dt+

∫ t̂2

t1

wTw dt+ · · · +
∫ t̂k

tk−1

wTw dt

≥ 1

h1

∫ t̂1

0
V̇ dt+

1

h2

∫ t̂2

t1

V̇ dt+ · · · + 1

hk

∫ t̂k

tk−1

V̇ dt by (4.9)

≥ ǫ
k∑

j=1

1

hj
because

∫ t̂j

tj−1

V̇ dt = ǫ by (4.10)

So V (x(T )) > kǫ⇒
∫ T

0 wTw dt ≥ ǫ
∑k

j=1
1
hj

.

The upper bound refinement is as follows: given V obtained from optimization problem

4.1, which satisfies (4.6) – (4.8), for each k = 1, . . . ,m, with ǫm = R2, solve
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Optimization Problem 4.2 (Reachable set refinement):

min hk over s11k, s12k ∈ Σn+nw

such that

−
[
(ǫk − V )s11k + (V − ǫ(k − 1))s12k + ∂V

∂x
f(x,w) − hkw

Tw
]
∈ Σn+nw (4.11)

to conclude that

∫ T

0
wTw dt < ǫ

m∑

k=1

1

hk

⇒ p(x(t)) ≤ β ∀t ≤ T.

With V fixed from the initial optimization problem 4.1, the refinement optimization

problem 4.2 is simply an SDP, as the decision variables in the polynomials s11k and s12k

enter linearly. By applying Lemma 2.1, constraint (4.11) is sufficient for (4.9).

4.1.2 Lower bound

For any positive T , it follows that

max
w∈L2[0,T ]
‖w‖2≤R

p(x(T )) ≤ max
w∈L2[0,∞)
‖w‖2≤R

p(x(t)) ≤ β (4.12)

where β is an upper bound obtained from Section 4.1.

The conditions for stationarity of the finite horizon maximum in (4.12) are the existence

of signals (x, λ) and w which satisfy ẋ = f(x,w), ‖w‖2 = R, and

λ(T ) =
∂p

∂x

∣∣∣∣
T

x(T )

λ̇(t) = −
(
∂f

∂x

)∣∣∣∣
T

x(t)
w(t)

λ(t), t ∈ [0, T ]

w(t) = µ

(
∂f

∂w

)∣∣∣∣
T

x(t)
w(t)

λ(t), t ∈ [0, T ] .
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Tierno et al. [35], propose a power-like method to solve a similar maximization. Adapting

the method for this case yields the following algorithm:

1. Pick w, with ‖w‖2 = R.

2. Compute solution of ẋ = f(x,w), from x(0) = 0.

3. Set λ(T ) := ∂p
∂x

∣∣∣
T

x(T )
.

4. Compute solution of λ̇(t) = −
(

∂f
∂x

)∣∣∣
T

x(t)
w(t)

λ(t), t ∈ [0, T ].

5. Update w(t) = µ
(

∂f
∂w

)∣∣∣
T

x(t)
w(t)

λ(t), with µ chosen so that ‖w‖2 = R.

6. Repeat steps 2 – 5 until w converges.

In practice, step 2 of each iteration gives a valid lower bound on maximum (over ‖w‖2 =

R) of p(x(T )), independent of whether the iteration converges. A main point of [35] is that if

the dynamics (i.e., f) are linear, and the functional p quadratic, then the iteration proposed

is indeed the correct power iteration to compute the induced norm of the operator mapping

w to p(x(T )).

4.1.3 Example

We use the example in [16] and [15] for comparison purposes. The nonlinear system is

ẋ1 = −x1 + x2 − x1x
2
2

ẋ2 = −x2 − x2
1x2 + w (4.13)

with x(t) ∈ R
2 and w(t) ∈ R. We choose p(x) = 8x2

1 − 8x1x2 + 4x2
2. For the upper bound

refinement, we use ǫ = 0.25 (i.e. for each R2, there are 4R2 annuli).
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The original upper bound is computed at 13 different values of R2, using optimization

problem 4.1 and searching over quadratic V , quadratic (and homogeneous) s10 and constant

(zero degree) s4. The refined upper bound uses (at each value of R2) the obtained V , and

solves the SDP optimization problem 4.2 with quadratic s11k and s12k.

Figure 4.1 shows the original upper bound in [15], the new refined upper bound, as well

as the lower bound1 for the nonlinear system. Clearly, for R2 ≤ 6, the upper and lower

bounds are quite tight, indicating that the upper bound refinement is very effective in this

example. Moreover, the improvement due to the refinement is very clear for R2 > 4. Also

shown in Figure 4.1 is the exact answer for the linearization (about x = 0, w = 0) of (4.13).

This is easily computed with grammians (see [5, Section 6.1, pg 78]). More interestingly,

if the worst-case input for this linearized system is applied to system (4.13), the resultant

peak value of p(x(t)) is quite suboptimal. This data is plotted, and is the lowest curve on

the graph. In many cases, it is about 45% lower than the actual worst-case cost. These

observations demonstrate that using linearized analysis for nonlinear systems with large

disturbances can lead to inaccurate estimates.

Figure 4.2 shows a particular worst case w(t) and the corresponding p(x(t)) for ‖w‖2
2 ≤ 6

on the interval t ∈ [0, 10].

4.1.4 Incorporating L∞ constraints on w

Suppose for the reachable set problem, we impose an additional L∞ constraint on w,

say wT (t)w(t) ≤ γ for all t ≥ 0. Constraint (4.5) would be modified as follows:

∂V
∂x
f(x,w) ≤ wTw ∀x ∈ {x |V (x) ≤ R2}, ∀w ∈ {w |wTw ≤ γ}. (4.14)

1Special thanks to Tim Wheeler for the lower bound calculations.
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Applying Lemma 2.1 to (4.14), we have the following optimization problem: For a fixed

γ > 0,

Optimization Problem 4.3 (Reachable set under bounded L2 and L∞ distur-

bances):

minβ over V ∈ Rn, V (0) = 0, s4 ∈ Σn, s10, s13 ∈ Σn+nw

such that

V − l1 ∈ Σn, (4.15)

(β − p) − (R2 − V )s4 ∈ Σn, (4.16)

−
(
(R2 − V )s10 + ∂V

∂x
f(x,w) − wTw

)
− s13(γ − wTw) ∈ Σn+nw . (4.17)

The corresponding upper bound refinement is as follows: given γ > 0 and V satisfying

(4.15) – (4.17), for each k = 1, . . . ,m, with ǫm = R2, solve

Optimization Problem 4.4 (Reachable set refinement under bounded L2 and

L∞ disturbances):

min hk over s11k, s12k, s13k ∈ Σn+nw

such that

−
[
(ǫk − V )s11k + (V − ǫ(k − 1))s12k + ∂V

∂x
f(x,w) − hkw

Tw
]

− s13k(γ − wTw) ∈ Σn+nw . (4.18)

We reuse the example in Section 4.1.3 to illustrate the effects of incorporating L∞

constraints on w. We choose to search over quadratic V , quadratic (and homogeneous) s10

and s13, and constant (zero degree) s4. After constraining, for example ‖w‖∞ ≤ 2, both

the upper bound and the refined upper bound are much lower (see Figure 4.3), illustrating

that as sufficient conditions, optimization problems 4.3 and 4.4 successfully exploit the L∞
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bound on w. In fact, for R2 > 7.5, the refined upper bound is even lower than the bound

for the linearized system. For clarity, we only show R2 ∈ [4, 10] as the curves for R2 < 4

are close together.

4 5 6 7 8 9 10
4

6

8

10

12

14

16

Linearized

R2

β

Refined Upper Bound
Without bound on ||w||∞

With ||w||∞ ≤ 2
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Figure 4.3. Bounds on reachable sets with and without bounds on ‖w‖∞

4.2 L2 to L2 analysis of nonlinear systems

Consider the following nonlinear system

ẋ = f(x,w)

z = h(x)

(4.19)

with x(t) ∈ R
n, w(t) ∈ R

nw , and z(t) ∈ R
nz . f is an n-vector with elements of Rn+nw such

that f(0, 0) = 0, while h is an nz-vector with elements of Rn such that h(0) = 0. We want

to find upper and lower bounds for the w to z induced L2 to L2 gain of this system.
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4.2.1 Upper Bound

Lemma 4.2. Consider system (4.19). If there exists a γ > 0 and a continuously differen-

tiable function V such that

V (0) = 0 and V (x) ≥ 0, (4.20)

∂V
∂x
f(x,w) ≤ wTw − γ−2zT z ∀(x,w) ∈ R

n × R
nw (4.21)

then for x(0) = 0 and ‖w‖2 ≤ R, we have ‖z‖2 ≤ γR.

Proof. Integrate (4.21) from 0 to T ,

∫ T

0

∂V
∂x
f(x,w) dt ≤

∫ T

0
(wTw − γ−2zT z) dt

V (x(T )) − V (x(0)) ≤
∫ T

0
(wTw − γ−2zT z) dt.

Since V (x(T )) ≥ 0, and V (x(0)) = V (0) = 0,

∫ T

0
γ−2zT z dt ≤

∫ T

0
wTw dt ≤ R2

⇒ ‖z‖2 ≤ γR or
‖z‖2

‖w‖2
≤ γ

Also note that V (x(T )) ≤
∫ T

0 (wTw−γ−2zT z)dt ≤
∫ T

0 wTwdt ≤ R2, therefore V (x(T )) ≤

R2 ∀T ≥ 0, so we can relax (4.21) to hold for all x ∈ {x |V (x) ≤ R2} instead of for all

x ∈ R
n. With this relaxation, Lemma 4.2 can be cast as the following optimization problem:

min γ over V ∈ Σn, V (0) = 0

such that

∂V
∂x
f(x,w) ≤ wTw − γ−2zT z ∀x ∈ {x |V (x) ≤ R2} and ∀w ∈ R

nw (4.22)

Applying generalized S-procedure (Lemma 2.1) to (4.22), we have
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Optimization Problem 4.5 (Upper bound for L2 to L2 gain):

min γ over V ∈ Σn, V (0) = 0, s1 ∈ Σn+nw

such that

−
[
(R2 − V )s1 + ∂V

∂x
f(x,w) − wTw + γ−2zT z

]
∈ Σn+nw (4.23)

We can obtain a tighter upper bound if we use composite V = maxq
i=1{Vi}. The

conditions are derived following along the same line as in Section 3.1.2:

min γ over Vi ∈ Σn, Vi(0) = 0, i = 1, . . . , q

such that when Vi(x) ≥ Vj(x), j 6= i,

∂Vi

∂x
f(x,w) ≤ wTw − γ−2zT z ∀x ∈ {x |Vi(x) ≤ R2} and ∀w ∈ R

nw (4.24)

Applying Lemma 2.1 to (4.24), we have

Optimization Problem 4.6 (Upper bound for L2 to L2 gain using pointwise

max of V ):

min γ over Vi ∈ Σn, Vi(0) = 0, s0ij , s1i ∈ Σn+nw , i = 1, . . . , q

such that

−
[
(R2 − Vi)s1i + ∂Vi

∂x
f(x,w) − wTw + γ−2zT z

]
−

q∑

j=1
j 6=i

s0ij(Vi − Vj) ∈ Σn+nw (4.25)

There are q SOS constraints for this optimization problem.

4.2.2 Lower Bound

For any positive T , it follows that

max
w∈L2[0,T ]
‖w‖2≤R

‖z‖2,[0,T ] ≤ max
w∈L2[0,∞)
‖w‖2≤R

‖z‖2 ≤ γ (4.26)
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where γ is an upper bound obtained from (4.23). A power method to find stationary points

of the finite horizon maximization is introduced in [35] and is similar to the algorithm

presented in Section 4.1.2.

4.2.3 Example: L2 to L2 Analysis for an Adaptive Control System

Consider the simplest form of the problem studied in [21]:

ẋ1 = x2 + θφ(x1)

ẋ2 = u

(4.27)

where θ is an unknown constant parameter (set to 2 for this particular example) and φ :=

x1 + 1. The control objective is to regulate x1 to xe
1 := 0.

The adaptive controller design procedure as documented in [21] is as follows (with design

parameters c1 and c2 set to 1): let z1 := x1, z2 := x2 − α1, and α1 := −z1 − θ̂φ(z1). The

controller state θ̂ evolves as

˙̂
θ = τ2 = Γ

(
z1φ− z2

∂α1
∂z1

φ
)
,

producing output u:

u = −z2 − z1 + ∂α1
∂z1

(z2 + α1 + θ̂φ(z1)) + ∂α1

∂θ̂
τ2 .

From [21], for all θ, the closed loop system has a single globally asymptotically stable

equilibrium point: xe
1 = 0, xe

2 = −θφ(xe
1) = −θ and θ̂e = θ.

Consider an input disturbance w, as shown in Figure 4.4. Starting from the equilibrium

point [z1, z2, θe]
T = [0, 0, 0]T , what is the L2 → L2 gain from w to x1, and how is this

affected by the adaptation gain Γ?
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Figure 4.4. Block diagram for adaptive control example
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Figure 4.5. Krstić example: L2 to L2 gain (w → x1) for Γ = 1 and Γ = 4

Figure 4.5 shows upper and lower bounds2 on the induced L2 → L2 gain for Γ = 1

and Γ = 4 at many different values of ‖w‖2. The upper bounds are obtained by using the

pointwise maximum of two quartic V ’s for optimization problem 4.6.

The points marked at ‖w‖2 = 0 are the H∞ norm of the linearized system. For positive

values of ‖w‖2, upper and lower bounds on the induced gain are computed, and shown as

interval bounds. This figure indicates that when the input disturbance is small (‖w‖2 ≤ 0.22,

2Special thanks to Tim Wheeler for the lower bound calculations.
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Table 4.1. Krstić example: L2 to L2 gains (γ) of single and pointwise max of 2 quartic V ’s.

Γ q R 0.802 0.956 1.09 1.21 1.315 1.50 1.73 2.00

1 γ 0.380 0.386 0.393 0.400 0.408 0.424 0.449 0.486
1

2 γ 0.375 0.379 0.385 0.391 0.398 0.412 0.434 0.469

1 γ 0.482 0.496 0.500 0.500 0.500 0.500 0.500 0.500
4

2 γ 0.478 0.494 0.500 0.500 0.500 0.500 0.500 0.500

say), large adaptation gain (Γ = 4) has better worst-case disturbance rejection performance

than small adaptation gain (Γ = 1). However, for large disturbances (‖w‖2 ≥ 0.83, say)

the trend is reversed, and the smaller adaptation gain has superior worst-case disturbance

rejection performance. This trend reversal illustrates the value of nonlinear induced norm

analysis.

Table 4.1 shows the L2 to L2 gain with respect to various ‖w‖2 ≤ R values for a single

quartic V using optimization problem 4.5 and pointwise maximum of 2 quartic V ’s. From

the table, we can see that there is some noticable tightening of the upper bound when the

pointwise maximum of 2 quartic V ’s are used, especially for Γ = 1. This tightening is at

the expense of using more decision variables: optimization using a single quartic V has

162 decision variables, while the pointwise maximum of two quartic V ’s have 343 decision

variables. If a single 6th degree V is used, the upper bound is not as tight as the pointwise

maximum of two quartic V ’s, but uses almost twice as many decision variables (631 vs 343).

For example, when Γ = 1, R = 1.5, γ = 0.416 for the 6th degree V , while γ = 0.412 for the

pointwise maximum of two quartic V ’s.

Another question one might ask is: starting from the equilibrium point [z1, z2, θe]
T =

[0, 0, 0]T , what is the L2 → L2 gain from w to θe, and how is this affected by the adaptation

gain Γ? Figure 4.6 shows upper and lower on the induced L2 → L2 gain for Γ = 1, 2 and 4

at many different values of ‖w‖2. The solid lines are the upper bounds obtained by a single

quartic V using optimization problem 4.5, while the dashed lines are the upper bounds
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Figure 4.6. Krstić example: L2 to L2 gain (w → θe) for Γ = 1, 2 and 4

obtained by the pointwise maximum of two quartic V ’s using optimization problem 4.6 and

the dotted lines are the lower bounds. While the effect of adaptation gain on this induced

norm is uninteresting, we can see the dramatic improvement in the upper bounds (for Γ = 2

and 4) when the pointwise maximum of two quartic V ’s are used.

4.3 Chapter Summary

We have presented the upper bound refinement of the reachable set of a nonlinear system

due to a bounded L2 disturbance. Results from an example showed visible improvement of

this refinement and the tightness of the refined upper bound when compared to the lower

bound. We also presented a related problem of finding an upper bound of the reachable set

due to a disturbance that has both L∞ and L2 bounds. Finally, we presented the technique

of analyzing the induced L2 → L2 gain of a nonlinear system and its refinement through the

use of pointwise maximum of polynomials. We illustrate these techniques with an adaptive

control system example.
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Chapter 5

Synthesis

In this chapter, we present two main ideas on synthesis that utilize sum-of-squares (SOS)

programming. The first is on controller synthesis using a Control Lyapunov Function (CLF).

Construction of a CLF for a nonlinear system is generally a difficult problem, but once a CLF

is found, stabilization of the system is straight-forward. We shall present an optimization

problem that searches for CLFs for polynomial systems that are affine in control using SOS

programming. We shall also present an optimization problem for searching local CLFs for

the same class of nonlinear system when global asymptotic stabilization is not possible.

Such a local CLF is also optimized to enlarge a subset of the system’s region of attraction

using the feedback law derived from the local CLF.

The second idea is on nonlinear observer synthesis using SOS programming. Many

control design methods utilize state feedback, but the states are not always known. As such,

an observer is needed to estimate the states of the system. For linear systems, Luenberger

observers and Kalman filters are widely used. For nonlinear systems, extended Kalman

filters, unscented Kalman filters [17], sliding mode observers and geometric methods have
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been developed. We take the approach of Lyapunov based methods, along the lines proposed

by Vidyasagar [39].

5.1 Control Lyapunov Function

Artstein [1] and Sontag [31] showed that for a nonlinear system that is affine in control,

the existence of a smooth Control Lyapunov Function (CLF) for the system implies smooth

stabilizability for the system. Given a CLF for a nonlinear system, there are several feedback

laws that can stabilize the nonlinear system, one of which is given by [31]. Hence, once we

have a CLF for the system, stabilization is straight-forward.

On the other hand, construction of the CLF is difficult in general, with the exception of

special classes of systems. For example, [10] has shown that for a system that is feedback

linearizable, a quadratic CLF can be constructed in the feedback linearized coordinates.

In this section, we take the direct approach of searching for CLF through the use of the

Positivstellensatz (P-satz) theorem and SOS programming.

Earlier work [14], [15], [16] on controller synthesis using SOS programming involves

explicitly searching for a polynomial control law and hence the control law is smooth at the

origin. In contrast, the CLF method does not explicitly search for a control law. Moreover,

the control law constructed from the CLF might not be a polynomial and is allowed to

be non-smooth at the origin, which can be a desirable characteristic [32] because there are

examples of systems with C1 vector fields that cannot be stabilized by a C1 state feedback

controller, but can be stabilized by a controller that is non-smooth at the origin [2].

As with the formulation of stability and performance analysis in the previous two chap-

ters, in the formulation for CLF search, the decision polynomials enter bilinearly, so an
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algorithm was proposed in [34] that involved a two-way iterative search between the Lya-

punov function and the SOS multipliers. With the recent introduction of YALMIP and

PENBMI, which allow for bilinear polynomial optimization, we can do away with the two-

way iterative search, but as PENBMI is a local bilinear matrix inequality solver, convergence

to the global optimum is not guaranteed.

5.1.1 Background

We will first present the single input case and leave the multi-input case till Section

5.1.3. Suppose we are given a system of the form

ẋ = f(x) + g(x)u (5.1)

where x(t) ∈ R
n, u(t) ∈ R, f and g are smooth vector fields and f(0) = 0.

Definition 5.1. A function V is a Control Lyapunov Function (CLF) for system (5.1) if

V : R
n → R is a smooth, radially unbounded, and positive definite function such that

inf
u∈R

{
∂V
∂x
f(x) + ∂V

∂x
g(x)u

}
< 0 ∀x 6= 0 . (5.2)

Existence of such a V implies that (5.1) is globally asymptotically stabilizable at the origin.

Further analysis of the LHS of inequality (5.2) reveal that

inf
u∈R

{
∂V
∂x
f(x) + ∂V

∂x
g(x)u

}
=






−∞ when ∂V
∂x
g(x) 6= 0

∂V
∂x
f(x) when ∂V

∂x
g(x) = 0 .

(5.3)

As a result, V is a CLF if ∂V
∂x
f(x) < 0 for all non-zero x such that ∂V

∂x
g(x) = 0. With such

a CLF, Sontag [31] proposed a feedback law u = k(x), with k(0) = 0 that is constructed

from the CLF such that the closed loop system is globally asymptotically stable:

a(x) := ∂V
∂x
f(x) , b(x) := ∂V

∂x
g(x) , (5.4)
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k(x) :=






−a+
√
a2 + b4

b
when b 6= 0

0 when b = 0 ,

(5.5)

dV

dt
= a(x) + b(x)k(x) =






−
√
a2 + b4 < 0 when b 6= 0

a < 0 when b = 0 .

(5.6)

Such a k(x) is at least continuous at the origin and smooth everywhere else. Hence, the

problem of globally asymptotically stabilizing (5.1) is reduced to finding a CLF for the

system, which is a non-trivial problem.

Given a CLF V satisfying (5.2), if we replace V by αV , where α > 0, condition (5.2)

is still satisfied, but the controller is now α dependent. This α dependence enables us to

adjust the magnitude of the control action and the response time taken to converge to the

origin, after a CLF is found. The modified controller is:

kα(x) :=






−a+
√
a2 + α2b4

b
when b 6= 0

0 when b = 0 ,

(5.7)

5.1.2 SOS formulation

In this subsection, we shall show how the definition of a CLF can be formulated as

empty set questions so that the P-satz can be applied. This is followed by simplifications

to the equations so that SOS programming can be used.

From (5.3), we can see that for a fixed x such that ∂V
∂x
g(x) 6= 0, we can make the

inequality (5.2) hold by choosing a large value of u of the correct sign. As a result, the

crucial place to check is the set of x such that ∂V
∂x
g(x) = 0. There, the inequality ∂V

∂x
f(x) < 0

must be satisfied, i.e. we want

∂V
∂x
f(x) < 0 ∀x ∈ R

n such that ∂V
∂x
g(x) = 0, x 6= 0 . (5.8)

79



If we restrict (5.1) to f and g being polynomial vector fields, we can use SOS pro-

gramming to search for a polynomial CLF V . The condition that V is positive definite

and radially unbounded is rewritten as (5.9). Condition (5.8) is rewritten as an empty set

condition (5.10) and the search for V is posed as the following feasibility problem:

find V ∈ Rn such that

V (x) > 0 ∀x ∈ R
n\{0}, V (0) = 0, and ‖V (x)‖ → ∞ as ‖x‖ → ∞, (5.9)

{
x ∈ R

n
∣∣ ∂V

∂x
g(x) = 0, ∂V

∂x
f(x) ≥ 0, x 6= 0

}
is empty . (5.10)

The constraints x 6= 0 in (5.9) and (5.10) are equivalent to positive definite polynomials

li(x) 6= 0. Usually li(x) is of the form li(x) =
∑n

j=1 ǫijx
2
j , where ǫij are positive numbers.

Condition (5.9) can be reformulated by underbounding V by l1 (which itself is radially

unbounded), and restricting V to be a polynomial with no constant term, i.e. V (0) = 0.

Our problem is now

find V ∈ Rn such that V (0) = 0

{x ∈ R
n |V (x) ≤ 0, l1(x) 6= 0} is empty, (5.11)

{
x ∈ R

n
∣∣ ∂V

∂x
g(x) = 0, ∂V

∂x
f(x) ≥ 0, l2(x) 6= 0

}
is empty . (5.12)

Using the P-satz, the above feasibility problem is rewritten as follows:

find s0, s1, s3, s4 ∈ Σn, V, p2 ∈ Rn, V (0) = 0, k1, k2 ∈ Z+

such that

s3 − V s4 + l2k1
1 = 0, (5.13)

s0 + s1
[

∂V
∂x
f(x)

]
+ p2

[
∂V
∂x
g(x)

]
+ l2k2

2 = 0 . (5.14)

In order to use SOS programming tools, some simplifications are needed. By choosing
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k1 = k2 = 1, and factoring out a l1 term in (5.13), and a l2 term in (5.14), we get the

following sufficient conditions:

Optimization Problem 5.1 (Global CLF search):

find s1 ∈ Σn, V, p2 ∈ Rn such that

V − l1 ∈ Σn, (5.15)

−
{
s1

[
∂V
∂x
f(x)

]
+ p2

[
∂V
∂x
g(x)

]
+ l2

}
∈ Σn . (5.16)

If the above optimization problem is feasible, then V is a CLF for system (5.1).

5.1.3 Multi-input Case

The formulation and feasibility problem presented above can be easily extended to

systems with multiple inputs. Consider the following multi-input nonlinear system

ẋ = f(x) +
m∑

i=1

gi(x)ui (5.17)

where x(t) ∈ R
n, u(t) ∈ R

m, f and g1, . . . , gm are smooth vector fields and f(0) = 0.

For a smooth, radially unbounded, positive definite function V to be a CLF, it must

satisfy

∂V
∂x
f(x) < 0 ∀x ∈ R

n \ {0} such that ∂V
∂x
gi(x) = 0, i = 1, . . . ,m . (5.18)

Equivalently, the empty set question becomes:

Is
{
x ∈ R

n
∣∣ ∂V

∂x
g1(x) = 0, . . . , ∂V

∂x
gm(x) = 0, ∂V

∂x
f(x) ≥ 0, x 6= 0

}
empty? (5.19)

Applying P-satz to (5.19) and using the same simplifications as in (5.14), we get

−
{
s1

[
∂V
∂x
f(x)

]
+

m∑

i=1

p2i

[
∂V
∂x
gi(x)

]
+ l2

}
∈ Σn . (5.20)
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For multi-input systems, we just need to replace (5.16) with (5.20) in the optimization. The

number of SOS constraints still remains the same, but we need to search over polynomials

p21, . . . , p2m, instead of just p2.

The multi-input state feedback controller is constructed as follows [31]:

a(x) := ∂V
∂x
f(x) , bi(x) := ∂V

∂x
gi(x) , β(x) :=

m∑

i=1

b2i (x) , (5.21)

ki(x) :=






−bi
a+

√
a2 + β2

β
when β 6= 0

0 when β = 0 .

(5.22)

Again, we can use a parameter, α > 0, to adjust the magnitude of the control action:

kiα(x) :=






−bi
a+

√
a2 + α2β2

β
when β 6= 0

0 when β = 0 .

(5.23)

5.1.4 Examples

5.1.4.1 Example 1 - A bilinear system

The following 2nd order bilinear system is taken from [37], which has shown that this

system can be globally asymptotically stabilized by an appropriate mixing of the stabilizing

controllers for the slow and fast subsystems. We shall use feasibility problem 5.1 to find a

stabilizing controller for this system without exploiting such knowledge.

ẋ1 = (3x1 + 4x2)u

ẋ2 = (−20x1 + 10x2)u

(5.24)

Also, for this example, the veracity of the solution from our optimization can be easily

checked with some simple analysis using Linear Matrix Inequalities (LMIs), which we shall

present below.
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Given a bilinear system of the form

ẋ = (Lx)u (5.25)

where x(t) ∈ R
n, u(t) ∈ R and L ∈ R

n×n, the only way that (5.2) can be satisfied is

by finding a V such that the set
{
x ∈ R

n
∣∣ ∂V

∂x
Lx = 0

}
is empty, so either ∂V

∂x
Lx > 0 or

∂V
∂x
Lx < 0 for all x 6= 0. We can take this analysis further by considering quadratic

V = 1
2x

TPx, with P ≻ 0.

Proposition 5.1. A quadratic V is a CLF for system (5.25) if either one of the following

SDP problem is feasible:

Find P ∈ R
n×n such that Find P ∈ R

n×n such that

P ≻ 0 and PL ≻ 0 or P ≻ 0 and PL ≺ 0

Applying Proposition 5.1 to our example, let V = 1
2x

TPx, where

P :=




P11 P12

P T
12 P22



 ≻ 0 . (5.26)

Suppose we choose ∂V
∂x
g(x) > 0 for all x 6= 0. This condition can be reduced to an LMI:

∂V
∂x
g(x) = (3P11 − 20P12)x

2
1 + (4P11 − 20P22 + 13P12)x1x2 + (10P22 + 4P12)x

2
2 =: xTMx > 0

⇔ M :=




3P11 − 20P12 2P11 − 10P22 + 6.5P12

2P11 − 10P22 + 6.5P12 10P22 + 4P12



 ≻ 0 . (5.27)

If we can find a V such that (5.26) and (5.27) are satisfied, then V is a CLF. We will

verify that the CLFs for this system obtained from our optimization satisfy LMIs (5.26)

and (5.27). As a side note, V = 1
2(x2

1 + x2
2) is not a CLF because it does not satisfy (5.27).

We set the degrees of V, s1 and p2 to search over to be 2, 4 and 2 respectively. The

resulting CLF from the feasibility problem 5.1 is V = 3.01x2
1 − 0.143x1x2 + 1.00x2

2, which

can be easily verified that it satisfies (5.26) and (5.27).
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5.1.4.2 Example 2 - A multi-input example

This 3-state system, which has a 2-dimensional locally stable manifold, is from example

3 of [3]. They showed that the system can be globally stabilized by forcing the dynamics

onto that stable switching manifold and hence the control action exhibits chattering about

the switching surface. We shall use SOS programming to search for a CLF for this system.





ẋ1

ẋ2

ẋ3




=





−x1 + x2
2

−2x2

3x3 + x3
2




+





−2

1 + x2
3

1 + 4x2
1




u1 +





5x1

1 − x2
2

3




u2 (5.28)

The degrees of V, s1 and p2i are chosen to be 2, 0 and [1, 1] respectively. We performed the

optimization with constraints (5.15) and (5.20) and obtained a feasible result, i.e. we found a

CLF for this system. Using the feedback formula (5.22), a simulation with initial conditions

x0 = [−1, 0.8, 1]T was performed and the results are shown in Figure 5.1. Compared to [3],

our response times are faster, but use more control action. We could have traded off response

time vs control action using the α dependent controller (5.23).
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Figure 5.1. Multi-input CLF example. Left: States, Right: Control action
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5.2 Local Control Lyapunov Function

When system (5.1) cannot be globally asymptotically stabilized, we ask whether we can

locally stabilize the system and how large can we make its region of attraction. In this

section, we shall present an optimization problem for searching a local CLF.

5.2.1 SOS Formulation

When V , a candidate CLF, fails to satisfy (5.2), it is because there are points x such that

∂V
∂x
g(x) = 0 and ∂V

∂x
f(x) ≥ 0. If a system cannot be globally stabilized, another CLF-based

approach is to find a compact set that excludes such points.

We want to find a level set Ω = {x ∈ R
n |V (x) ≤ 1} such that ∀x ∈ Ω \ {0} and

∂V
∂x
g(x) = 0, we have ∂V

∂x
f(x) < 0. The level set Ω is a region of attraction for the closed

loop system when we use Sontag’s feedback law (5.5). This is because for all x ∈ Ω \ {0}

such that b = ∂V
∂x
g(x) 6= 0, we have dV

dt
= −

√
a2 + b4 < 0 and when b = 0, dV

dt
= a < 0.

As in previous chapters, to enlarge Ω, pick a positive definite p. Define a variable sized

region Pβ := {x ∈ R
n | p(x) ≤ β} such that Pβ ⊆ Ω. By maximizing β, we are enlarging Pβ

and Ω. These two conditions result in the following set containment constraints:

{
x ∈ R

n
∣∣V (x) ≤ 1, ∂V

∂x
g(x) = 0

}
\ {0} ⊆

{
x ∈ R

n
∣∣ ∂V

∂x
g(x) = 0, ∂V

∂x
f(x) < 0

}
, (5.29)

{x ∈ R
n | p(x) ≤ β} ⊆ {x ∈ R

n |V (x) ≤ 1} . (5.30)

The equivalent empty set questions of (5.29) and (5.30) become:

Are
{
x ∈ R

n
∣∣V (x) ≤ 1, ∂V

∂x
g(x) = 0, ∂V

∂x
f(x) ≥ 0, x 6= 0

}
and (5.31)

{x ∈ R
n | p(x) ≤ β, V (x) ≥ 1, V (x) 6= 1} empty? (5.32)
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Again, using a positive definite, SOS polynomial l2(x) to replace the non-polynomial con-

straint x 6= 0 in (5.31) and applying the P-satz to (5.31) and (5.32), we have

s0 + s1(1 − V ) + s2
[

∂V
∂x
f(x)

]
+ s3(1 − V )

[
∂V
∂x
f(x)

]
+ p4

[
∂V
∂x
g(x)

]
+ l2k2

2 = 0 (5.33)

s5 + s6(β − p) + s7(V − 1) + s8(β − p)(V − 1) + (V − 1)2k3 = 0 (5.34)

By choosing s3 = 0 and k2 = 1, and factoring out a l2 term, we simplify the constraint

(5.33) into sufficient condition

−
{
s1(1 − V ) + s2

∂V
∂x
f(x) + p4

∂V
∂x
g(x) + l2

}
∈ Σn . (5.35)

Equation (5.34) has a (V − 1)2k3 term which cannot be optimized using SOS programming,

so we cast this constraint as an S-procedure by setting s5 = s6 = 0, k3 = 1, and factoring

out a (V − 1) term.

With these simplifications to (5.33) and (5.34), a sufficient condition for a local CLF is

formulated as the following optimization problem:

Optimization Problem 5.2 (Local CLF optimization):

max β over s1, s2, s8 ∈ Σn, V, p4 ∈ Rn, V (0) = 0

such that

V − l1 ∈ Σn (5.36)

−
(
(β − p)s8 + (V − 1)

)
∈ Σn (5.37)

−
{
s1(1 − V ) + s2

∂V
∂x
f(x) + p4

∂V
∂x
g(x) + l2

}
∈ Σn (5.38)

Again, the constraints (5.37) and (5.38) are bilinear in the decision polynomials. We

can easily extend this formulation for local CLFs to the multi-input case, using the ideas

in Section 5.1.3.
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5.2.2 Example

This example is the taken from [15]. Consider the following nonlinear system:

ẋ1 = u

ẋ2 = −x1 + 1
6x

3
1 − u .

(5.39)

We shall analytically show that quadratic V ’s do not meet the (global) CLF condition

(5.2) for this system. Define V := 1
2x

TPx, where P is a positive definite symmetric matrix:

P :=



 P11 P12

P T
12 P22





We look at the sign of ∂V
∂x
f(x) when ∂V

∂x
g(x) = 0:

∂V
∂x
f(x) = xTPf = (P12x1 + P22x2)(−x1 + 1

6x
3
1) (5.40)

∂V
∂x
g(x) = xTPg = (P11 − P12)x1 + (P12 − P22)x2 = 0 (5.41)

Since (5.41) is a linear equation, we can solve for x2 and substitute it into (5.40):

x2 = mx1 where m :=
P11 − P12

P22 − P12

∂V
∂x
f(x) = (P12x1 + P22x2)(−x1 + 1

6x
3
1)

= (P12 + P22m)(−x2
1 + 1

6x
4
1) (5.42)

The first term in (5.42) is a constant, which could be positive or negative, depending

on the choice of P . The second term in (5.42) is a quartic function in x1 and the roots

of this function are 0, 0,−
√

6,
√

6. The interval (−
√

6,
√

6) is of opposite sign to the set

(−∞,−
√

6)
⋃

(
√

6,∞), regardless of how we chose the entries of P . As such, it is not

possible for (5.42) to be negative definite, and hence this system is not globally stabilizable

for a quadratic V . When the global CLF optimization problem 5.1 is used to search for a

global quadratic CLF V , we get infeasible result, which is expected. We can also try using

higher degree V ’s, but instead, we will take the approach of finding a local CLF.
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We use optimization problem 5.2 to find a local CLF for this system by setting the

degrees of V , s1, s2, s8 and p4 to be 2, 2, 0, 0 and 3 respectively. The level set that we

are interested in enlarging is Pβ := {x ∈ R
2 | p(x) ≤ β}, where p(x) = 1

6x
2
1 + 1

6x1x2 + 1
12x

2
2.

For a quadratic V , the region where (5.42) is negative is on the line segment x2 = mx1, for

x1 ∈ (−
√

6,
√

6) and x2 ∈ (−m
√

6,m
√

6). Hence, this system has a semi-global stabilization

property, where β can be made arbitrarily large by optimizing the coefficients of V to

obtain large m values, and so we set an upper bound of β = 100 for this example. After

optimization, β = 100 is indeed obtained and the CLF is V = 0.912x2
1+1.015x1x2+0.538x2

2.

In comparison with our previously published result [34], where β = 38.37 after 50 iterations,

our new optimization utilizing PENBMI gives a much larger β value without resorting to

“V-S” iterations.

Figure 5.2 shows the level set {x ∈ R
2 |V (x) ≤ 1} which is a region of attraction for this

system when we use the resulting local CLF and the corresponding feedback law. The line

segment shows both the set
{
x ∈ R

n | ∂V
∂x
g(x) = 0, ∂V

∂x
f(x) < 0

}
and our region of attraction

stay within this line segment in this direction.

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

x
1

x
2

V = 1

β = 100

Figure 5.2. CDC’03 example: Closed loop system’s region of attraction
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5.3 Nonlinear Observers

In this section, we will derive sufficient conditions for finding polynomial observers

for polynomial systems using SOS programming. We develop our optimization problem of

searching for the observer using the concept of weak detectability, as proposed by Vidyasagar

[39]. Background material from [39] will be presented in the next subsection, 5.3.1.

5.3.1 Background

Consider a nonlinear system of the form

ẋ = f(x, u)

y = h(x)

(5.43)

where x(t) ∈ R
n, y(t) ∈ R

ny and u(t) ∈ R
nu . In addition, this system is assumed to satisfy

the following conditions:

1. f is continuously differentiable and f(0, 0) = 0,

2. there are constants α and c such that

∣∣∣
∣∣∣∂f
∂x

∣∣∣
∣∣∣ ≤ α and

∣∣∣
∣∣∣∂f
∂u

∣∣∣
∣∣∣ ≤ α ∀x ∈ Px,∀u ∈ Pu,

3. h is continuous and h(0) = 0.

Here, Px and Pu denote some closed regions centered at the origin.

Definition 5.2. The system (5.43) is said to be weakly detectable if one can find a function

L : R
n × R

ny × R
nu → R

n and a function V : R
n × R

n → R+ such that

1. L is continuous and L(0, 0, 0) = 0,
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2. there exists class K functions ψ1, ψ2, ψ3 such that

ψ1(‖x− z‖) ≤ V (x, z) ≤ ψ2(‖x− z‖) ∀x ∈ Px, ∀z ∈ Pz (5.44)

∂V
∂x
f(x, u) + ∂V

∂z
L(z, h(x), u) ≤ −ψ3(‖x− z‖) ∀x ∈ Px, ∀z ∈ Pz, ∀u ∈ Pu (5.45)

According to Definition 5.2, if the system (5.43) is weakly detectable, then we can set

up a weak detector

ż = L(z, y, u) (= L(z, h(x), u)) (5.46)

for system (5.43). If u(t) always stays in Pu and if the solution trajectories x(t) and z(t)

do not leave Px and Pz respectively, then x(t) − z(t) → 0 as t → ∞. However, if these

conditions on x(t), z(t) and u(t) are not satisfied, there is no guarantee that x(t)− z(t) will

tend towards 0. If Px = R
n, Pz = R

n and Pu = R
nu , then L is said to be a global detector

for system (5.43).

Consider the special case of systems of the form

ẋ = f1(x) + f2(h(x), u) ,

y = h(x) ,

f1(0) = 0, f2(0, 0) = 0

h(0) = 0 .

(5.47)

Lemma 5.1. Given system (5.47), if we can find a function Ṽ : R
n → R+, a continuous

function L̃ : R
n × R

ny → R
n with L̃(0, 0) = 0, and class K functions ψ4, ψ5, ψ6 such that

ψ4(‖x− z‖) ≤ Ṽ (x− z) ≤ ψ5(‖x− z‖) ∀x ∈ Px, ∀z ∈ Pz (5.48)

∂Ṽ
∂(x−z)

[
f1(x) − L̃(z, h(x))

]
≤ −ψ6(‖x− z‖) ∀x ∈ Px, ∀z ∈ Pz, (5.49)

then the system is weakly detectable.

Proof. Define V (x, z) := Ṽ (x − z), then (5.48) is equivalent to (5.44). Also define

L(z, y, u) := L̃(z, y) + f2(y, u), then
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∂Ṽ
∂(x−z)

[
f1(x) − L̃(z, h(x))

]
= ∂Ṽ

∂(x−z)

[
(f1(x) + f2(h(x), u)) − (L̃(z, h(x)) + f2(h(x), u))

]

= ∂V
∂x
f(x, u) + ∂V

∂z
L(z, h(x), u) ,

so (5.49) is a special case of (5.45), where it holds for all x ∈ Px, z ∈ Pz, and u ∈ R
nu .

Lemma 5.1 states that if we have a system of the form (5.47), then we only need to find

an u independent weak detector L̃(z, y). This is because f2 is a function of y and u, which

are known and can be measured, and not a function of x (unknown), so if the function f2

is known exactly, it can be duplicated in L, i.e. L(z, y, u) = L̃(z, y) + f2(y, u), so that the

effects of f2(y, u) are canceled out in ẋ− ż.

Definition 5.3. The system (5.43) is said to be stabilizable if one can find a function

k : R
n → R

nu with the following properties:

1. k is continuously differentiable with k(0) = 0, and β is a class K function such that

∣∣∣∣∂k
∂x

∣∣∣∣ ≤ β(‖x‖), ∀x ∈ Px ,

2. x = 0 is an asymptotically stable equilibrium point of ẋ = f(x, k(x)).

The function k is called a stabilizing control law for (5.43).

Theorem 5.1. [39][Theorem 3.1]. Consider the system (5.43). If it is stabilizable and

weakly detectable, then x = 0 and z = 0 is an asymptotically stable equilibrium point of the

system

ẋ = f(x, k(z)) , y = h(x)

ż = L(z, y, k(z))

(5.50)
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Theorem 5.1 states that if the system (5.43) is stabilized by the control law u(t) =

k(x(t)), then it is also stabilized by the control law u(t) = k(z(t)), where z(t) is the output

of the weak detector for x(t). However, this theorem only states that the equilibrium point

is locally asymptotically stable, but it does not quantify the region of attraction. Of course,

we can use our method of enlarging a provable region of attraction as presented in Section

3.1 for the system (5.50).

5.3.2 SOS formulation

If we restrict the system (5.47) to polynomial vector fields and are searching for a

polynomial weak detector L̃, we can use SOS programming in the synthesis of L̃.

First, note that in (5.44) – (5.45) and (5.48) – (5.49), ψi are class K functions that are

not necessarily polynomials. We will replace these class K functions with positive definite

polynomials with the help of the lemma below [18, Lemma 4.3].

Lemma 5.2. Let W : D → R be a continuous positive definite function defined on a domain

D ⊂ R
n that contains the origin. Let Br ⊂ D for some r > 0. Then, there exist class K

functions α1 and α2, defined on [0, r], such that

α1(‖x‖) ≤W (x) ≤ α2(‖x‖) (5.51)

for all x ∈ Br. If D = Rn, the functions α1 and α2 will be defined on [0,∞) and the

foregoing inequality will hold for all x ∈ R
n. Moreover, if W (x) is radially unbounded, then

α1 and α2 can be chosen to belong to class K∞.

Lemma 5.3. Let l(x) =
∑n

j=1 ǫjx
2k
j . Then for any q ∈ Σn with q(0) = 0, k ∈ Z+ and

ǫj > 0, there exists α1, α2 ∈ K∞ such that ∀x ∈ R
n,

α1(‖x‖) ≤ l(x) + q(x) ≤ α2(‖x‖) (5.52)
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Proof. This lemma is a direct consequence of Lemma 5.2. The function W (x) := l(x)+q(x)

is continuous and positive definite on the domain D = R
n. Moreover, since l is radially

unbounded, W is radially unbounded as well.

By Lemma 5.3, the class K functions ψi in (5.44) – (5.45) and (5.48) – (5.49) can be

replaced by positive definite polynomials Wi of the form Wi(x− z) = li(x− z) + Ŵi(x− z),

where li(x− z) =
∑n

j=1 ǫij(xj − zj)
2, and Ŵi ∈ Σn with Ŵi(0) = 0. For example in (5.48),

ψ4(‖x− z‖) ≤ Ṽ (x− z) ≤ ψ5(‖x− z‖) ∀x ∈ Px, ∀z ∈ Pz

can be replaced with

W4(x− z) ≤ Ṽ (x− z) ≤W5(x− z) ∀x ∈ Px, ∀z ∈ Pz (5.53)

because there exists class K functions ψ4(‖x− z‖) and ψ5(‖x− z‖) such that

ψ4(‖x−z‖) ≤W4(x−z) ≤ Ṽ (x−z) ≤W5(x−z) ≤ ψ5(‖x−z‖) ∀x ∈ Px, ∀z ∈ Pz (5.54)

By replacing the class K functions in (5.48) – (5.49) with positive definite functions, we

have the following sufficient conditions for Lemma 5.1:

If there exists a n vector-valued polynomial L̃ ∈ Rn+ny with L̃(0, 0) = 0, a polynomial

Ṽ ∈ Rn, and positive definite polynomials W4,W5,W6 ∈ Rn such that

W4(x− z) ≤ Ṽ (x− z) ≤W5(x− z) ∀x ∈ Px, ∀z ∈ Pz (5.55)

∂Ṽ
∂(x−z)

[
f1(x) − L̃(z, h(x))

]
≤ −W6(x− z) ∀x ∈ Px, ∀z ∈ Pz, (5.56)

then the system ż = L(z, y, u) = L̃(z, y) + f2(y, u) is a weak detector for the system (5.47).

We usually search for L̃ of the form L̃ := LMLV where LM is a matrix of real numbers

with n rows, and LV is a vector of polynomials formed from the multiplicative monoid of
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(z, y). For example, if the system (5.47) has n = 2, and ny = 1, and we are searching for L̃

with linear and cubic terms only, then

LV = [z1, z2, y, z
3
1 , z

2
1z2, z1z

2
2 , z

3
2 , z

2
1y, z1z2y, z

2
2y, z1y

2, z2y
2, y3]T . (5.57)

5.3.2.1 Global detectors

Now, we shall show the SOS formulation for the simplest case where we are synthesizing

a global detector for system (5.47). For global detectors, the quantifiers in constraints

(5.55) and (5.56) should hold for all x, z, i.e. Px = R
n and Pz = R

n. Constraint (5.55) is

automatically satisfied if we restrict the search of Ṽ to positive definite polynomials, as W4

and W5 can be chosen to be Ṽ .

The system ż = L(z, y, u) = L̃(z, y) + f2(y, u) is a global detector for system (5.47) if

the following optimization is feasible:

Optimization Problem 5.3 (Global detector synthesis):

Find V̂ ∈ Σn, V̂ (0) = 0, ǫvj > 0, Ŵ6 ∈ Σn, Ŵ6(0) = 0, ǫ6j > 0,

L̃ ∈ Rn+ny , L̃(0, 0) = 0

such that with

Ṽ (x− z) := V̂ (x− z) +
n∑

j=1

ǫvj(xj − zj)
2,

W6(x− z) := Ŵ6(x− z) +
n∑

j=1

ǫ6j(xj − zj)
2,

−
{

∂Ṽ
∂(x−z)

[
f1(x) − L̃(z, h(x))

]
+W6(x− z)

}
∈ Σ2n . (5.58)

Note that this optimization problem is bilinear in the decision polynomials Ṽ and L̃.
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5.3.2.2 Weak detectors

We now focus on the non-global case of finding a weak detector for system (5.47). For

simplicity in SOS formulation, at the expense of being more restrictive, we will require that

(5.55) hold for all x, z ∈ R
n, instead of for all x ∈ Px, and z ∈ Pz. Due to this simplification,

constraint (5.55) is automatically satisfied if we restrict the search of Ṽ to positive definite

polynomials.

We want constraint (5.56) to hold for as large a region as possible, so that the weak

detector works in this region. Let the closed sets Px := {x ∈ R
n | px(x) ≤ c} and Pz := {z ∈

R
n | pz(z) ≤ c}, where px and pz are positive definite polynomials chosen by the user. The

resulting set containment condition is

{(x, z) | px(x) ≤ c, pz(z) ≤ c} ⊆
{

(x, z)
∣∣∣− ∂Ṽ

∂(x−z)

[
f1(x) − L̃(z, h(x))

]
−W6(x− z) ≥ 0

}
.

(5.59)

Applying generalized S-procedure to (5.59), we have the following maximization problem:

Optimization Problem 5.4 (Weak detector synthesis):

max c over V̂ ∈ Σn, V̂ (0) = 0, ǫvj > 0, Ŵ6 ∈ Σn, Ŵ6(0) = 0, ǫ6j > 0

L̃ ∈ Rn+ny , L̃(0, 0) = 0, s1, s2 ∈ Σ2n,

such that with

Ṽ (x− z) := V̂ (x− z) +

n∑

j=1

ǫvj(xj − zj)
2,

W6(x− z) := Ŵ6(x− z) +
n∑

j=1

ǫ6j(xj − zj)
2,

−
{

∂Ṽ
∂(x−z)

[
f1(x) − L̃(z, h(x))

]
+W6(x− z)

}

− s1(x, z)(c− px(x)) − s2(x, z)(c− pz(z)) ∈ Σ2n . (5.60)
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5.3.3 Examples

5.3.3.1 Example 1 - Duffing Equations

The Duffing equations are as follows:

ẋ1 = x2

ẋ2 = x1 − x3
1

y = x1 + 1
2x2.

(5.61)

This system is autonomous and has 3 equilibrium points: (0, 0), a saddle, and (±1, 0), which

are centers. It is known to have a conservative energy function E = 1
2x

2
2 − 1

2x
2
1 + 1

4x
4
1, so

the system’s trajectories are periodic. Depending on the initial conditions, the system will

exhibit one of the 3 types of orbits as shown in Figure 5.3.
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−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x
2

Figure 5.3. Duffing Equations: Periodic orbits

We are interested in synthesizing a global nonlinear detector using SOS programming.

Since the system is autonomous, the feasibility problem 5.3 is applicable here. We choose
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to search over quartic Ṽ (x−z), quadratic W6(x−z) and L̃ with only linear and cubic terms

in z and y, so L = L̃ = LMLV , where LV is as shown in (5.57) and LM is a R
2×13 matrix.

We obtained a feasible result and implemented the global detector in SIMULINK. The

simulation results are shown in Figure 5.4. The estimation error is defined as e := x − z.

The first three rows are results for the system starting from initial conditions representative

of the three types of orbits, with the detector’s initial states at the origin. The last row is to

demonstrate the global nature of the detector by starting the detector states very far away

(at (−5,−5)) from the system’s initial conditions (at (0, 1)). In all four cases, the estimation

error converges to zero within 2 secs, however, the transient behavior is poor, with large

overshoot due to the aggressive nature of the global detector. Unfortunately, as presented,

feasibility problem 5.3 does not have a performance measure to penalize the overshoot. In

comparison, [20] designed a locally convergent nonlinear observer using backstepping for

the same problem, but their estimation error converges to zero in about 5 seconds, with a

much smaller overshoot.

5.3.3.2 Example 2 - State Feedback

Once again, we revisit the state feedback example from [15]. Suppose we do not have

access to both states of the system and have to estimate them in order to utilize the state

feedback controllers already designed in [15], [16], [34] and Section in 5.2.2.

ẋ1 = u

ẋ2 = −x1 + 1
6x

3
1 − u

y = x2 .

(5.62)

Since the system is of the form (5.47) and is time-invariant, we shall use the optimization
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x0 = (1, 0.5), z0 = (0, 0)
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Figure 5.4. Duffing Equations: Left: Estimate vs actual states; Right: Estimation errors
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problem 5.4 to search for a weak detector that enlarges regions Px := {x ∈ R
2 | px(x) ≤ c}

and Pz := {z ∈ R
2 | pz(z) ≤ c}. We choose to use the same px as in the abovementioned

state feedback examples, i.e. px(x) = 1
6x

2
1 + 1

6x1x2 + 1
12x

2
2, and pz(z) is chosen to be of the

same shape, i.e. pz(z) := px(z).

Even though we can directly measure x2 in (5.62), optimization problem 5.4 searches

for a full-state weak detector, so we will use the estimated states z1 and z2, instead of z1

and x2 for feedback.

We choose to search over homogeneous quadratic Ṽ (x − z), W6(x − z), s1(x, z) and

s2(x, z), and search over L̃ with linear and cubic terms only. The optimization returns

a weak detector with c = 0.1667, which seems rather small compared to these provable

regions of attraction when using state feedback: β = 54.65 in [16] and β = 100 in Section

5.2.2. However, we should view c = 0.1667 as a measure of the estimation error x − z:

as long as the solution trajectories x(t) and z(t) do not leave Px and Pz respectively, then

x(t) − z(t) → 0 as t→ ∞.

We perform some closed-loop simulations with z(0) = [0; 0] and x(0) = [−1; 2], which

is just inside the level set Px with c = 0.1667. We use controllers from the following two

cases:

1. From [16], the state feedback controller is K(x) = −145.94x1 + 12.25x2, so we use

K(z) = −145.94z1 + 12.25z2.

2. The controller constructed from the CLF in Section 5.2.2, where x in the formula

(5.5) is replaced by z.

For case 1, Figure 5.5, shows that x(t) and z(t) do not leave Px and Pz respectively,
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Table 5.1. CDC’03 example: Closed loop system

degree of total no. of
q V s6i s8i s9i s0ij β decision variables

1 2 0 2 0 - 0.339 48
1 4 2 2 0 - 0.400 581

2 2 0 2 0 2 0.463 160
2 4 2 2 0 2 0.514 1182

so the estimation error indeed converges to zero and the origin is asymptotically stable by

Theorem 5.1. For case 2, x(t) does briefly leave Px twice, as seen in Figure 5.6, but the

estimation error still converges to zero.

Even though Theorem 5.1 states that the origin of the closed loop system is asymptoti-

cally stable using the estimated states as feedback, it does not quantify the system’s region

of attraction. We can use optimization problems 3.1 and 3.2 to quantify a provable region

of attraction for case 1 as the vector field is polynomial. However we cannot directly do the

same for case 2 as the controller is non-polynomial.

We choose p(x, z) = px(x)+px(z) as the ellipsoid to enlarge. Table 5.1 shows the results

for case 1, with the set {(x, z) | p(x, z) ≤ β} quantifying the size of a provable region of at-

traction {(x, z) |V (x, z) ≤ 1}. We will use the results from the pointwise maximum of two

quartic V ’s to illustrate the extent of its provable region of attraction. At z(0) = [0; 0], the

region enclosed by the diamond-shaped curve is the set {x | max{V1(x, 0), V2(x, 0)} ≤ 1},

as shown in Figure 5.7. Four initial conditions for x(0) are picked so that they are near

the boundary of this set. Simulation results with these initial conditions showed that

all the trajectories starting from these initial conditions converge to the origin. Note

that as x(t) and z(t) evolve, the x1 − x2 sectional view of provable region of attraction

{(x, z) | max{V1(x, z), V2(x, z)} ≤ 1} changes, so it is not the diamond-shaped curve any-

more, but the trajectories still remain within this region.
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Figure 5.5. CDC’03 example (Case 1): Left: Estimate vs actual states; Right: Estimation
errors
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Figure 5.6. CDC’03 example (Case 2): Left: Estimate vs actual states; Right: Estimation
errors
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Figure 5.7. CDC’03 example using estimated states for feedback with larger x0
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5.4 Chapter Summary

In the first part of this chapter, we formulated the search for global and local CLFs for

polynomial systems that are affine in control as SOS programming problems. We demon-

strate our techniques with some non-trivial examples. Traditionally, construction of CLFs

requires intimate knowledge of the system involved before one can even propose a likely

CLF candidate. Moreover, finding a CLF is often by trial-and-error. We hope that with

our method, finding CLFs for this class of nonlinear systems will be simplified and made

systematic.

In the second part of this chapter, we formulated the search for nonlinear observers

for polynomial systems as SOS programming problems, using Lyapunov based methods.

The method proposed is rudimentary as it does not address the transient behavior of the

observer, or its sensitivity to measurement noise and model uncertainties. One possibility

is to combine the robustness analysis in Section 3.3 and the induced L2 to L2 gain of

measurement noise to estimation error in Section 4.2 into our observer design. However,

this combination would be computationally expensive due to additional variables needed to

describe model uncertainties and measurement noises.
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Chapter 6

Conclusions and Recommendations

This thesis considered Lyapunov based control analysis and synthesis methods for con-

tinuous time nonlinear systems with polynomial vector fields. We take the optimization

approach of finding the Lyapunov functions through the use of SOS programming and the

application of the Positivstellensatz theorem.

In chapter 3, we presented SOS programs that enlarge a provable region of attraction for

polynomial systems. We proposed using pointwise maximum and minimum of Lyapunov

functions to reduce the number of decision variables and to obtain larger inner bounds

on the region of attraction. This idea is illustrated most notably with the Van der Pol

equations example. We also extended this region of attraction enlargement problem to

polynomial systems with uncertain dynamics by considering both parameter-dependent and

independent Lyapunov functions. Besides using the pointwise maximum of such functions,

we also proposed gridding the uncertain parameter space to further reduce the size of

the SOS program. The significance of the gridding method is made apparent with two

examples. A related stability region analysis problem of finding a tight outer bound for
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attractive invariant sets is also studied. Finally, we presented some computation statistics

on a region of attraction benchmark example with arbitrary data and increasing problem

size.

In chapter 4, we studied two local performance analysis problems for polynomial sys-

tems. The first is on finding upper bounds for the reachable set subjected to disturbances

with L2 and L∞ bounds. A SOS based refinement of the upper bound is proposed and

illustrated with a previously studied example. The second problem is on finding an upper

bound for the L2 → L2 gain and its refinement. Interesting results are obtained when this

method is applied to an adaptive control example.

In chapter 5, we studied controller and observer synthesis for polynomial systems. For

controller synthesis, we presented SOS programs for finding global and local Control Lya-

punov Functions. For observer synthesis, we formulated SOS programs that search for

polynomial observers using Lyapunov based methods. Examples are provided to demon-

strate the synthesis methods in this chapter.

It is hoped that the optimization based methods in this thesis will complement existing

nonlinear analysis and design methods. There are several research directions that one can

take from here:

1. In chapters 3, 4 and 5, we consider robust stability, performance and synthesis sepa-

rately. In order for a control methodology to be truly useful in any practical settings,

what is needed is to have robust performance specifications built into synthesis prob-

lems. Take for example, the nonlinear observer synthesis as presented in Chapter

5. The method proposed is rudimentary as it does not address the transient behav-

ior of the observer, or its sensitivity to measurement noise and model uncertainties.
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One possibility is to combine the robustness analysis in Section 3.3 and the induced

L2 to L2 gain of measurement noise to estimation error in Section 4.2 into our ob-

server design. However, this combination would be computationally expensive due to

additional variables to describe model uncertainties and measurement noises.

2. As the SOS program problem size increases exponentially with the increase in the

number of variables and the degree of the polynomial, this lack of scalability will

ultimately limit the size of the problems considered. One approach is to break a

complicated system into smaller nonlinear systems and consider the input-to-output

behaviors of these smaller nonlinear systems and try to draw conclusions about the

behavior of the interconnections of such system. To this end, the nonlinear small gain

theorem and the integral quadratic constraint (IQC) methodology appear to show

some promise.

3. The other direction to tackle this non-scalability of SOS programming is to exploit the

structure and sparsity of the problem so that the SOS programs can be formulated

into SDPs that are of smaller problem sizes. Some headway were made in [26] in this

aspect and it would be worthwhile to continue research into this area.

4. Our local analysis and synthesis formulation resulted in SOS programs that are bilin-

ear in the decision polynomials. This necessitates an efficient, global bilinear solver

whose role is partially filled by PENBMI, a local bilinear solver. It is hoped that there

will be significant advances in the development of efficient global bilinear solvers in

the future.
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Appendix A

Practical Aspects of using SOS

Programming

This appendix is written to help the reader with some practical aspects of using SOS

programming tools, based on my anecdotal experience.

A.1 Constraints on the Degrees of Polynomials

A.1.1 Low degree terms in SOS multipliers

Since a Lyapunov function is required to be positive definite on a domain containing

the origin, a polynomial Lyapunov function V (x) must have V (0) = 0 and V (x) must not

contain any linear terms. As a result, V (x) has quadratic and/or higher terms only.

The lack of a constant term in V (x) imposes some constraints on the selection of mono-

mials in the SOS multipliers. Take for example constraint (3.16) in Section 3.1.1:

−s8 + V s8 − ∂V
∂x
fs9 − l2 ∈ Σn (A.1)
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Since f(0) = 0, ∂V
∂x
fs9 does not contain any constant or linear terms. Moreover, l2 is a

positive definite function, so l2(0) = 0. If we allow the search of s8(x) with constant terms,

V s8 will have quadratic terms and above. Hence (A.1) will only have constant term due

to −s8, so −s8(0) ≥ 0. As s8 ∈ Σn, s8(0) ≥ 0; this condition together with (A.1) imposes

s8(0) = 0, i.e. no constant term. In practice, a numerical solver cannot set this constant

term to a hard zero, but will push it to a very small positive number. As a result, by

allowing s8 to have a constant term often leads to numerical problems. With s8 chosen to

have quadratic and/or higher terms, (A.1) will only have quadratic and higher terms as well,

leading to less decision variables in the affine subspace. Summarizing, for SOS conditions

that require ∂V
∂x
f < 0 on the set {x |V ≤ 1}, the SOS multiplier associated with the term

(1 − V ) should not have a constant term.

A.1.2 Using local analysis for global problems

On a related note, it is not recommended to use a local version of nonlinear analysis

when global results are expected. For example, suppose a polynomial system is globally

asymptotically stable and there exists a positive definite and radially unbounded V such

that −∂V
∂x
fs9 − l2 ∈ Σn. If, however, we use (A.1) instead to certify global stability, setting

s8 ≡ 0 should recover the global asymptotic stability condition. However, in practice, s8 ≡ 0

cannot be obtained by the solvers, and may give infeasible results or numerical problems

as the entries of V are scaled smaller and smaller so that {x |V (x) ≤ 1} represents an

increasingly larger region. The message here is not to use local analysis when global analysis

is needed.
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A.1.3 Overall degree of SOS constraints

It is also useful to examine the degree of each term in a SOS constraint. Take for

example the simple SOS condition V − l1 ∈ Σn, where l1 is a user chosen positive definite

polynomial. If V is chosen to be quartic and l1 is chosen to be of degree 6, V − l1 ∈ Σn

cannot be satisfied because the highest degree terms are from −l1, and their coefficients are

negative. Choosing degrees of V and l1 such that deg(V ) ≥ deg(l1) will prevent infeasibility

due to such degree constraints.

For some other SOS constraints, it might not be so obvious as the previous example.

Take for example in the CLF formulation, constraint (5.16) in Section 5.1.2:

−
{
s1

[
∂V
∂x
f(x)

]
+ p2

[
∂V
∂x
g(x)

]
+ l2

}
∈ Σn

Since p2, g ∈ Rn, the term p2

[
∂V
∂x
g
]

is not sign definite, so it is not clear whether this term

should have degree greater or less than the other terms. One particular choice that I have

used is to set the degrees of V , s1, and p2 such that both s1
[

∂V
∂x
f(x)

]
and p2

[
∂V
∂x
g(x)

]
have

the same degree.

I have also used a similar idea for other SOS constraints, where the degree of each term

except l2 is set to be equal, whenever possible. Take for example, constraints (3.25) and

(3.26) in the Van der Pol example. From Table 3.2, we can see that I have chosen the degrees

of the SOS multipliers such that the degrees of ps6i and Vi are equal (p is quadratic). With

the degree of s6i chosen, there is no more leeway to choose the degree of βs6i as β is a

scalar. Also Vis8i,
∂Vi

∂x
fs9i and s0ij(Vi − Vj) are chosen to have the same degree.
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A.1.4 Terms with small coefficients

After optimization, it might be insightful to examine the coefficients of the decision

polynomials returned by the solver. When there are entries that are 5 or 6 orders of mag-

nitude smaller than other entries, it might indicate that those small entries are not needed

and including them in the optimization might lead to numerical errors. For example, in

Section 5.3.3.1, where we are synthesizing a nonlinear observer L for the Duffing equations,

the quadratic terms of L have very small values, which is not surprising since the Duffing

equations have linear and cubic terms only. After the quadratic terms of L have been ex-

cluded, we re-run the optimization again and we still obtain feasible results, indicating that

the excluded quadratic terms are redundant.

A.2 Reducing decision variables in the affine subspace

In using YALMIP to solve SOS programming problems, we often need to search over

SOS multipliers. The following two forms of declaring a SOS multiplier s6 may look similar,

but there is a significant difference in the number of decision variables involved:

sdpvar x1 x2;

z6 = monolist([x1; x2],3);

s6M = sdpvar(size(z6,1));

s6 = z6’*s6M*z6;

F = set(sos(s6));

sdpvar x1 x2;

z6 = monolist([x1; x2],3);

s6M = sdpvar(size(z6,1));

s6 = z6’*s6M*z6;

F = set(s6M >= 0);

The code fragment on the LHS explicitly tells YALMIP that s6 has to satisfy the

condition s6 ∈ Σn. The number of variables involved in the affine subspace of s6M when

using the image representation (sos.model == 2) is 27 (from Table 2.1, n = 2, 2d = 6).
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In contrast, the code fragment on the RHS tells YALMIP that s6 is a SOS polynomial by

imposing that its Gram matrix s6M is positive semidefinite. Since we are searching over

the decision polynomial s6, and recall that s6 ∈ Σn if and only if there exists a positive

semidefinite s6M, the two forms of declarations are equivalent. However, the RHS code does

not incur the additional 27 decision variables in the affine subspace.

Another place where we can reduce the number of decision variables in the affine sub-

space is the V positive definite constraint. Note that V −l1 ∈ Σn ⇔ ∃V0(x) ∈ Σn, V0(0) = 0

such that V (x) = V0(x) + l1(x). The following two code fragments are similar, but again,

the LHS incurs the additional decision variables while the RHS does not.

sdpvar x1 x2;

l1 = 0.01*(x1^2 + x2^2);

z = monolist([x1; x2],3);

z = z(2:end); % Remove constant term

P = sdpvar(size(z,1));

V = z’*P*z - l1;

F = set(sos(V)) + set(P >= 0);

sdpvar x1 x2;

l1 = 0.01*(x1^2 + x2^2);

z = monolist([x1; x2],3);

z = z(2:end); % Remove constant term

P = sdpvar(size(z,1));

V0 = z’*P*z; V = V0 + l1;

F = set(P >= 0);

Recall the Van der Pol equations example in Section 3.1.4.1. Table A.1 shows the

difference in the number of decision variables when using the two different forms of declaring

V and the SOS multipliers, as illustrated in all of the code fragments above. The difference

becomes significant when the degrees of the polynomials are high.

Table A.1. VDP (Single V ): Comparison of no. of decision variables

degree of total no. of decision variables
V s6 s8 s9 LHS RHS
2 0 2 0 13 13
4 2 2 0 60 57
6 4 2 0 192 166
8 6 2 0 482 392

10 8 2 0 1017 795
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A.3 Using YALMIP and PENBMI

In this section, I will recommend some settings for YALMIP and PENBMI to avoid

numerical problems. In addition, I will highlight an easy method to force PENBMI to

search over different feasible regions in order to improve upon the local optimal results.

A.3.1 Bounding the objective function

Since PENBMI is a local BMI solver, convergence to the global minimum is not guar-

anteed. For each run of PENBMI, it starts with randomized initial conditions, so with

repeated runs, we might get the global minimum. One easy way to help this process along

is to impose upper and lower bounds on the objective function to restrict the feasible region

that PENBMI is allowed to search over.

Take for example, in the Van der Pol equations example in Section 3.1.4.1, we are maxi-

mizing the objective function β, which is a measure of the provable region of attraction. Of

particular use is the setting of an increasingly larger lower bound on β after each successful

run. For example, in searching for a degree 6 single Lyapunov function, we obtain β = 0.781

after numerous repeated runs. Since we know that β = 0.781 is achievable, we can set the

lower bound of β to 0.8 so that PENBMI will not converge to that local maximum, but will

try to find another better local maximum. After several such increasing lower bounds, we

are able to obtain β = 0.909.
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A.3.2 Settings for YALMIP

By default, YALMIP automatically does scaling for SOS programs. As a first step, try

turning off the scaling if you encounter numerical problems:

opts = sdpsettings;

opts.sos.scale = 0;

...

solvesos(F,-beta1,opts);

A.3.3 Settings for PENBMI

There are settings in PENBMI that can be useful in resolving numerical problems or

infeasibility due to numerical problems. Oft-times, I noticed that as the PENBMI iteration

progresses, the two columns that represent slackness in linear and matrix multipliers, feas

and <U,A(x)>, show small positive values, indicating that the problem is already feasible, so

the optimization is trying to minimize the objective function as much as possible. However,

due to possible ill-conditioning of multiplier matrices update during the iterations, the

values displayed in the <U,A(x)> column start to increase rapidly and eventually, we get

infeasible results. In order to terminate the optimization earlier before such ill-conditioning

occurs, the following settings for PENBMI have been useful:

opts.penbmi.PBM MAX ITER = 500;

opts.penbmi.PBM EPS = 2.5e-6;

opts.penbmi.PRECISION 2 = 1e-6;

opts.penbmi.MU2 = 0.05;
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The stopping criteria [13] for PENBMI are 1) when the normalized difference between

the objective function and the augmented Lagrangian is less than PBM EPS, and 2) the rate

of change in the objective function value between iterations is less than PBM EPS. Since

PBM EPS is the tolerance for these two stopping criteria, relaxing this tolerance results in

the optimization stopping earlier. PRECISION 2 is the tolerance of the KKT optimality con-

ditions. MU2 is the update step size for the matrix multipliers. Setting this to a smaller value

helps to prevent ill-conditioning of the matrix multipliers during update. Since the step size

for the matrix multipliers is reduced, it might take more iterations to reach the optimal

solution, so setting PBM MAX ITER to a larger number prevents premature termination due

to maximum number of iterations being reached.

A.3.4 Scaling the objective function

Since PBM EPS is the tolerance for two stopping criteria, we cannot independently change

one of the criteria with PBM EPS. However, we can do so by scaling the objective function.

Recall that one of the stopping criteria is that the rate of change in the objective function

value between iterations is less than PBM EPS. By scaling the objective function to a smaller

value, say β → 0.01 ∗ β, the optimization will terminate earlier, at the expense of obtaining

a sub-optimal solution.
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