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Abstract

Matrix Representations of Polynomials:

Theory and Applications
by

Zachary W. Jarvis-Wloszek

Master of Science in Engineering - Mechanical Engineering
University of California, Berkeley

Professor Andrew Packard, Chair

This report considers a nonlinear state transformation that possesses certain prop-
erties that make it amenable to controls problems. With this state transformation,
we can form matrix representations of high degree multivariable polynomials, which
allows us to use techniques of linear algebra and quadratic polynomials to gain a
greater understanding of these higher degree polynomials.

Representing polynomials as matrices gives us an LMI test to see if a polynomial is
a sum of squares polynomial as well as providing a generalization of the S-procedure
to include higher degree polynomials along with the standard quadratic forms. The
representation of a higher degree polynomial under the nonlinear transform also gives
a method for fitting data to both sum of squares and general polynomials

Lastly considered in this report are sum of squares polynomial Lyapunov func-
tions to demonstrate simultaneous stability for a finite collection of linear systems.
We show that the minimum degree sum of squares Lyapunov function that demon-
strates simultaneous stability for a collection of linear systems can be written as a
homogeneous polynomial, subject to a weak definiteness condition. The resulting
approach to finding a sum of squares Lyapunov function allows us to improve the
performance of a bench mark example problem, as well as consider the stability of an

observer that receives intermittent information from the plant.
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Chapter 1

Introduction

Studying new problems by reformulating them into a more familiar framework
allows you to use your existing expertise in one area to gain a deeper understanding
of new one; in control engineering, linear algebra is a well understood tool into whose
forms many problems can be recast. This report is based around the idea of using
a nonlinear state transform to study and exploit the characteristics of multivariable
high degree polynomials, which are not standard control engineering tools, with linear
algebra.

By working with the polynomials in the familiar forms of vectors and matrices,
we can expand results relating to quadratic polynomials to ones of arbitrary degree.
The familiarity that we gain with high degree polynomials under the nonlinear state
transformation, does come at the price of unique representations.

Even with the troubles of non-uniqueness, this transformation allows us to to form
the central result of Chapter 4, that limits the size of the search for a positive definite
function, as an LMI feasibility problem. The convexity of such a search is a very
pleasing byproduct of using the transform, and the problem formulation allows us to

easily consider a large set of examples.



Chapter 2

Power State Transformation

2.1 Definition of the transform

Definition 2.1 Consider the vector x € IR",

4|

Tn

the power transformation of degree p is a nonlinear change of coordinates that
forms a new vector = of all integer powered monomials of degree p that can be made

from the original x vector,

] . . .Pu P2 i —
x) =qatwy? -k l=1,---,m

with ¢; € R, m = ("+£_1), pj € {0,1,...,p}, the restriction 3 ;pi; = p, VI, and

where the ordering of the xl[p] s 18 lexigraphic in the py;’s.

Note that 2% = ¢, and z!'! = Cx, with C = diag(cy,- -+ ,cm). Also, since all the

a:Ep]’s have different combinations of powers of the z;’s, they are linearly independent,

but it is important to remember that the :cgp]’s are not independent.



2.1.1 Length preservation under the transform

Usually we will take the ¢; = 1, VI, to simplify notation and calculation, but if we

¢ = (p) (p—pu) (p—pu _"'_pl(n—l))
bu D2 Pin

p!
pi'pi2! - - pin!

we have the following lemma originating in [Bro73].

let

or equivalently

C =

Lemma 2.1 Letting < x,y > be the ordinary Fuclidean inner product, the following

relation holds
<z, y >P=< Pl ylPl >

Proof:
Working out the details of the inner product gives the desired result.

n p
<zy>P = [szyzl

i=1
(a) i p! [x y ]pn[x y ]:012 [x Y ]pln
- ool - oy 1 292" [TnlYn
—; PiPiz- - Pin:
. P! Di1 D p! it n
= —x A J/‘ n —y LR y n
l:zl l pulpe! - pw!™ " pulp! - pm! n
m
- e
1=1

where equality (a) is from the multinomial formula.

Corollary 2.1
215 = (||l

Note: From here on, we will assume that all the ¢, = 1.



2.1.2 Examples of the transform

The following are examples of the power transform:

1. The most basic formisn=p=2 = m=3

i
1230
213
1122

I
T1T2T3

$1.T§
I3 3
Lo

SL'%.T?,

ToT3

3
T3

2.2 Relations under the transform

The power transformation preserves certain linear relations which makes the trans-

form useful for studying linear systems.



2.2.1 Definition and properties of AP!

Lemma 2.2 Given A € R™" and p € Z,, then under the power transform, AP €
R(T+ﬁ_l)x(n+§_l) such that (Az)lP! = APzl Vo € R™.

Proof:
Let y = Az, and by induction with the original linear equation
Yyl =y = Az = Az = A = 4

as the base case, we will assume that there exists an A™ such that
y = APzl holds. Each yl["+1] = ][-"]yk for some j, k. Since yj[”] is a
linear combination of monomials in the x;’s of degree n and vy, is a linear
combination of the x;’s, their product will just be a linear combination of
monomials in the z;’s of degree n + 1. This implies that yl[”+1] is a linear

combination of degree n + 1 monomials in the z;’s giving the /th row of
At g0 ylntll = Alnti]gnti]

O

We know more about APl and its structure from its construction.

Lemma 2.3 The elements of APl are homogeneous polynomials of degree p in the

elements of A. Definition 3.2 gives a full definition of homogeneous polynomials.

Proof:

Given y = Ax, each y; is linear in the elements of A, and each yl[p Iis

a monomial of degree p in the y;’s, which forces these products to be
homogeneous polynomials of degree p in the elements of A.

Theorem 2.1 Given A, B € R™, AP and B! satisfy
1. (AB)[P] — Al glp]

2. (AP = (AP with q integer and A7 well defined.



9. (A%l = (Al
(This is Theorem 1 in [Bro73|)

Proof:
1. Let z = Ay = ABx, then 2Pl = Allylrl = Al BlPlglPl — (AB)PlglP],
2. Use (1.) with B= A (or B = A"!) and go by induction.
3. Using Lemmas 2.1 and 2.2,
<zl (APl gl 5 = < APl gl] S
= < Azxz,x>P
= <zx A"z >?
< zlPl, (A*)[p]x[p} >

Since these equalities hold for any z, (A*)Pl = (AlP))*.

Examples

1. Forr=n=p=2

2 2
aj; 2a11012 ajy
ain Q12 [2]
A= = A% = | aja 11029 + a12a91  G1209
Qo1 Q22 2 2
ay 2a91 092 a39

2. Forr=1,n=2p=4
A= [ a1 G12 ] = A= [ aéh 4“?16112 6“%1“%2 4041“?2 ail2

3. Forr=2,n=3,p=2

air a2 as
A =

| G21 Q22 Q23

2 2
aiy 2@11&12 2&11&13 ajo 2&120,13 (1,13

21 _—
A = Q11021 Q11022 + G12Q21 Q11023 + G13G21 (12022 Q12023 + G130220 (130923

2 2
a5 2@21 929 2&21 Qo3 A59 2&220,23 (1,23




2.2.2 Definition and properties of Ay,

Theorem 2.2 Given A(t) € R™" and p € L, with the relation ©(t) = A(t)z(t),
n+p—1) % (n+p— 1

then there exists a matriz Ap,(t) € R v) such that 4 <x[”] (t)) = Ay (t)zPl(t),

and the operation that maps A into Ay is linear.

Proof:

Looking to the original differential equation and the %(xlm)’s, we see that

by the product rule each 2 (zP) will be linear in the i,’s. Each ; is a

linear combination of the A;;’s, and this combination of linearity means
that the resulting products will remain linear in A;;’s. These linear re-
lations construct an Ap, such that its elements, the Ap;;’s, are linear
combinations of the A;;’s, showing that the map from A to Ay, is linear.

O
Alternatively we could follow [Bro73] and construct Ap, through the definition of the

time derivative of zP). Either way we get the very important corollary.
Corollary 2.2 Letting o, § € R and A, B € R™",

[CYA + BB][‘D] = OzA[p} + BB[p]

Eigenvalues of Ay,

Lemma 2.4 If A is Hurwitz, then Ap) is as well.

Proof:

Stability of Ay can be demonstrated for any diagonalizable A matrix
by taking the power transform of its diagonalization, TAT !, which with
Theorem 2.1 becomes T¥ Ay, (T?))~!. Since TAT~' was diagonal we have
equations of the form

with the \;’s the eigenvalues of A. Forming the power transform products

for fixed p and taking time derivatives yields

d d
[P])

Z @) == (@ al) = (pud - pa) (21 2R)



for each | = 1,...,m, showing that TP Ay (TP)~" is indeed diagonal.
Also, by the definition of the transform, each of the p;’s is non-negative,
they all sum to p, and, by assumption, each ); has negative real part.
Since TP Ay, (TP "1 is diagonal, this combination of the eigenvalues of
A implies that TP/ Ay, (T?)) Vs eigenvalues are in the left half plane and
their real part is bounded away from zero, which in turn implies that Ay,
is Hurwitz.

If A is not diagonalizable we can argue stability by continuity. Let v =
| max; Re();)| and then form the Jordan form of A, J = TAT™1. We
can form a sequence of perturbations to A, T 'D,T, with D;, chosen such
that o(Dy) < 37/k and Ji; + (Dg)si # Jj; + (Di);;. These perturbations
allow us to form the sequence of matrices

A, =A+T7'D,T

which clearly converges to A. By our choice of Dy’s, all of the A.’s are
diagonalizable and stable, and from our results for diagonalizable matrices
this implies that each of the (Ag)p,’s is stable with its eigenvalues’ real
parts bounded away from zero. By the continuity of the power transform,
the (Ag)p's converge to Apy and the bounds on the (Ay)p's eigenvalues
keep the eigenvalues of Ap, entirely inside the left half plane, so Ay, is
Hurwitz.

Examples
1. Forn=p=2

2(1,11 2(1,12 0
] = A= an an+axn apo

0 2a91 2a22

a11 Qa2

a21 Q22



2. Forn=2,p=14

4 = [ air Q12
| Q21 Q22
U
[ day daio
az  3a11 +
Ay = 0 2a91
0 0
0 0
3. Forn=3,p=2
[ a1 Gi2 G13
A = Q21 G2 Q23
| @31 G32 a33
U
[ 2a11 2a19
a1 Q11+ G2
A[2} _ asi asz
0 2a91
0 as
| 0 0

0
3aio
2a11 + 2a99
3ag
0
2a13 0
Q23 Q12
ann+asgs 0
0 2a99
21 a3z
2a31 0

0
0
2a12
aiy + 3ag

4dag

0
a3
a12
2a93
a2 + ass

2a3z

0

0

0
Q12

4@22

a13
0
Q23

2@33
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Chapter 3

Matrix representation of
polynomials using the power

transform

The previous chapter provides us with the useful tools of the power transformation
and allows us to work with high degree, high dimensional polynomials in the familiar
setting of quadratic functions on matrices, but this advance does not come without
its costs. If we use the power transform to represent polynomials as quadratic forms

on matrices, we lose the uniqueness of the representation of the polynomials.

3.1 Definitions relating to polynomials

Before we can begin to study representations of polynomials under the power
transformation, we need to make the following definitions about different classes of

polynomials.

Definition 3.1 (Polynomials) Let P, 4 be the set of all polynomials in n variables
with degree d.

Definition 3.2 (Homogeneous Polynomials) Let H, 4 be the set of all homoge-
neous polynomials in n variables with degree d. f € Hyq iff f € P4 and f(Az) =



11

X f(z).

The previous two definitions yield the trivial containment H, 4 C P, 4. Also, we

can see that any f € P, 4 is made up of sums of elements of H, ;, 7 =0,...,d.

Definition 3.3 (Positive Semidefinite Polynomials) Let I, o4 be the set of all
positive semidefinite polynomials in n variables with degree 2d. f € Il o9 iff f € P24
and f(x) >0, Vz € R".

Definition 3.4 (Sum of Squares Polynomials) Let ¥, o4 be the set of all sum of
squares polynomials in n variables with degree 2d. f € Yy 04 off d9; € Ppq with

f=2%29:)*
3.1.1 Some properties of the sets of polynomials

Working a few basic lemmas we get the building blocks of the later results.

Lemma 3.1 f € P,y if and only if IM € R™, with ¢ = Y., ("“LZ_I) such that

M = M* and
_ , _ _ , _
z z
[ = M
I 2l | I 2l |
for x € R".
Proof:

< Working out the multiplication gives a polynomial in n variables of
degree 2t.

= All the monomials of an f € P, o can be factored into products of two
monomials of degree less than or equal to ¢, so there is at least one, not
necessarily symmetric, matrix I such that

*

1 1
X X
f= R
[ [

Then take M = (R + R*).
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Remark: Lemma 3.1 is equivalent to the statement “All polynomials in z of de-
gree 2t can be represented as at least one symmetric quadratic form in the vector
1, z,---,zl].”

This lemma works on odd degree polynomials as well by picking 2¢ to be greater
than the odd degree. Looking at the set of homogeneous polynomials we get a similar

result.

n+p— 1) ™ (n+p— 1

Lemma 3.2 f € H,, 2, if and only if IM € B( » 7)) such that M = M* and
f =z Mzl for x € R"

Proof:

< We have f = 2lPlMzlP! with M = M*. By doing the multiplication
we get f € P, 9, and we have

fOx) = (W2 M (APzll) = \2PglPl pro Pl

= We know that f is a sum of degree 2p monomials, each of which can
be factored into a product of 2 degree p monomials. Thus, this sum of
products of 2 degree p monomials can be written as at least one quadratic
form f = zP*NzlPl with N not necessarily symmetric. We then let
M = (N + N*).

Remark: Lemma 3.2, is also equivalent to “All homogeneous polynomials in x of
degree 2p can be represented by at least one symmetric quadratic form in zP!.”
We can continue this string of lemmas establishing quadratic form representations

of polynomials with one for sum of squares polynomials that comes from [PowW98].
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Lemma 3.3 h € ¥,4 if and only if 3S € R™*? > 0, with q = Zzzo ("’L:j*l) such
that

Bl Bl
x x
h= ) S
I 2t | ] 2t |
for x € R".
Proof:

< Since S > 0, 3L € R**Y with k the rank of S, such that S = L*L,
which gives

1 * 1 1 2
T T k k )
h=|L]| L =L = (9)
: . 1=0 . 1=0
1t Ll 1t

with each g; € P, 4, so h € Xy, 9.

= We have h = Zfzo(gz’)z. Since each of the g;’s are in P, ;, we can intro-
duce I;’s € R?, such that g; = [1,z,---,2]*l;. Letting L* = [I1,--- , ],

we get
11" 1
T z
h = ) L*L
2[t] 2lt]

L*L > 0, so we take S = L*L.

Remark: Lemma 3.3 is equivalent to “All sum of squares polynomials in z of degree
2t can be represented by at least one positive semidefinite quadratic form in the vector

1,2, ,2l]”
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3.1.2 Containment relations among the sets of polynomials

By Lemmas 3.1, 3.2, and 3.3, along with definitions of the various sets of polyno-

mials, we get the containment result
En,2t C Hn,?t C Pn,2t

The strict containment is clear except for whether there exists a positive polynomial
that is not sum of squares, and an example demonstrating this strict containment is

given later in the discussion of testing whether a polynomial is sum of squares.

3.1.3 Examples

1. f=2x]+ 22329 — 2223 + 517

* *

1 000 1 22 2 -3 1 72
f: X 0 0 O X == 19 -3 5 0 T1T9
w2 00 S 2 72 1 0 5 73

Here S > 0 so f € X94, and also f € Hy4. Again, note that there are many
possible S matrices, and not all of them will be positive semidefinite. The
question of how to find a semidefinite one follows in §3.2. This example is
adopted from [Par00].

2. f=at+223+ 222 +1

*

1 1 00 1
f=1 =z 0 2 1 x
x? 01 1 2

since the matrix in the quadratic form is positive definite, f € ¥ 4.

3.2 Is a given polynomial sum of squares?

If given a polynomial, how do you tell if it belongs to the set X7 At first glance

it would seem that you need only find the matrix for the quadratic form, but since
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this matrix need not be unique, you might find a non-semidefinite one. This non-
uniqueness has been known for quite some time, [BosL68], and was studied more in
depth in [Par00].

By parameterizing the quadratic forms we can search over all possible represen-

tations. Defining

SN
Il

[P

we can write the polynomial as f = 2*QZ. To parameterize (), we take )y as a
particular representation of the polynomial, such that f = 2*QyZ, and then we find
all the symmetric ); such that 2*Q;z = 0. These );’s can be thought of as some
type of “homogeneous representations,” to parallel the types of solutions of differential

equations. With these matrices we can parameterize the equation as

Qo + Z )\in’] T

Now we look to find if there exists at least one ) > 0, and, nicely, this is just the
LMI feasibility problem

f=#

37N

st Qo+ AQi >0 (3-1)

The convexity of this feasibility problem gives us a definite answer to the question of

whether or not the given polynomial has a sum of squares representation.

3.2.1 The Q;’s

Why should there be any other matrix aside from the zero matrix such that
2*Q;x = 07 If we look back to the definition of the power transform, we see that the

elements are linearly independent, but not independent. Considering the most basic
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case n = p = 2. We have

A
.T[Q} = 33[22] = T1T9
7y 73

2
and a:[f]xg?} = (:L'[QQ]) . This relation gives the J; matrix as

0
Q= 0

1
2

1
2

o = O

0
0
For this case of n = p = 2 this is the only @); matrix. In general for any p, n there
will be g, , of these matrices.

The relations that are described by the (); matrices are quadratic equalities that

describe the cone on which the state vector, 2P, resides. These quadratic equalities

are of the form

oPlalP) _ gl

which is easily translated in to a symmetric matrix by letting the (i,7) and (4, 1)
entries be 1 and the (k,h) and (h, k) entries be —1, or some scalar multiple thereof.

Similar constructions can be done for the vector z.

3.2.2 Example that fails the sum of squares test

This example shows that the set 3, 24’s containment in the set I, 54 is strict, and
it is taken from §4.2 in [Par00].
Consider f € Psg,

f — :1343/2 + -T2y4 + 26 o 3$2y222

In [Par00], it is argued that this example, which is a Mozkin form in three variables,

can be shown to be positive semidefinite via the arithmetic-geometric inequality, so
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f €1l36. To check if f € X3¢, we first find a particular representation as

— - % -

3

— - ¥

3

T 0000 O O0O0OO0OO0OTDPO x
2%y 0100 O O0OOOOO 2y
2%z 0000 0 O0OO0O0OTO OO 7%z
27 0001 0O O0O0O0O0TO xy?
e TYZ 000O0-=-300W0TH0F2©6 TYZ
[ =3"QT =
x2? 0000 O O0OOOTOOQ O 22
y? 0000 0O 0O0O0TODO y®
Y2z 0000 O OOO0OO0ODTO Y2z
yz? 0000 O 0OOOUO OO yz?
| 2 | (0000 0 000O00O0T1][| 2%

Looking for all the quadratic combinations of states that yield equalities, we end
up finding 36 @);’s, so the existence of a sum of squares representation is the LMI
feasibility problem of (3.1) in the 36 A;’s.

The infeasibility of the LMI is given by a lower bound of ¢ = 0.178395, from the
dual, of the problem

min ¢
36

s.t. QO + Z )\1622 +tI >0
=1

This lower bound on £, shows that there exists no set of A;’s such that the sum of

squares form existence test will work, and thus that f € Il3¢ and f ¢ X35.

3.3 A generalized polynomial S-Procedure

A frequent question in optimization is: “Does a series of constraints imply another
constraint?” When the constraints are quadratic, we get the standard S-procedure
as given in [BoyEFB94|

Define the constraints
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with M; = M. Consider the following containment relation on the constraints

({z: Fi(z) > 0} C {z : Fy(z) > 0} (3.2)

i=1
We would like to know if this containment relation holds, and a sufficient condition
for (3.2) to hold is:

dr; >0, 1=1,...,k,
s.t. Fo(z) — zkleZFz(x) >0 Vz
i=
or using the matrix representation of the quadratic constraints
dr; >0, 1=1,...,k

k
S.t. M() — Z TZ'M,' Z 0
=1

i
which is just an LMI, so we can check the sufficient condition with minimal compu-
tational effort. When k£ = 1 this condition is also necessary, but it is not trivial to
show this.

We can now expand our set of constraints to be P, 9,, and using Lemma 3.1 we

can write the constraints as

— - % — -

1 1
T T .
Gi(z) := ' N; . i=0,...,k
_x[P]_ _x[P]_

with N; = N7

Consider the containment condition parallel to (3.2)

k
ﬂ {z: Gi(z) >0} C{z: Go(z) > 0} (3.3)
i=1

Again we would like to know if the containment above holds, and again a sufficient

condition for (3.3) to hold is:

Ir, > 0, i=1,...k
k
sit. Go(z) = Y. 1Gi(x) >0 Vx
i=1
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substituting in the definitions of the G;’s

dr; >0 i=1,...k,
_ . - _ . -
T k T
: i=1 :
2P 2P

If we can make the matrix in the quadratic form above positive semidefinite then
we have a sufficient condition for (3.3). Remembering about the ;’s, such that
2*Q;x = 0, we get

37’1'20, )‘j izl,...,k, ]:1,,h

k h
s.t. N() — ZTZNZ + Z /\ij 2 0
i=1 j=1

(3.4)

which is, again, just an LMI. Note also that if we allowed the 7;’s to be positive
semidefinite functions of z the same sufficient condition would hold. If the 7;’s were
polynomials, in addition to being positive semidefinite functions of x, then we could
form the matrix representation of the product 7;(x)G;(x) and substitute these matri-

ces for the N;’s in (3.4).

3.3.1 Example of a polynomial S-procedure

Letting Go(z) = 2* — ap2?, and Gy (z) = 2* — a;22, allows us to form a sufficient

condition for (3.3) as

dr >0
117 ([o o o 0 0 0 1
s.t. T 0 —ag 0| -7 |0 —a; O z | 20 Vz
2 0 0 1 0 0 1 7

which can be set in the form of the LMI feasibility problem of (3.4) as

I >0, M\
0 0 O 0 0 O 0 0 1
S.t. 0 —a 0|—-7 |0 —a; Of+AM]|0 =2 0|2>0
0 0 1 0 0 1 1 0 0
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Figure 3.1: Polynomial S-procedure for Go(z) = z* — 2? and G, (z) = z* — 222

or more succinctly

dn >0, A\
0 0 A1
s.t. 0 7mop—op—2)0 0 >0
M 0 1-7

Via the Schur form representation of the above matrix, we know that unless A\ = 0,
it will not be positive semidefinite. This observation makes the eigenvalues {0, 77 —
ap, 1—71}, by inspection, and gives the requirement «; > « as our sufficient condition
that {z : G1(z) > 0} C {z : Go(x) > 0}. A plot of the G;(x)’s for oy =1 and a; = 2

is given in Figure 3.1, which confirms the containment results implied by a; > «y.

3.4 Fitting functions with polynomials

A central part of implementing receding horizon control is finding the terminal
cost function that gives the worst case cost-to-go using some baseline controller.

Typically this function is only known on some grid of the system’s states, so that the
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cost function data will need to be interpolated for any particular state condition that
is not exactly on one of the grid points. These worst case cost-to-go functions are all
positive semidefinite functions since they represent the cost incurred by worst possible
disturbance acting on the system. This semidefiniteness makes it seem reasonable
to attempt to fit the terminal cost-to-go data with a positive semidefinite function
instead of relying on table interpolation. If we were more concerned with flexibility

than positive semidefiniteness, we could also fit the data with general polynomials.

3.4.1 Fitting data to sum-of-squares polynomials

If we restrict the set of positive semidefinite functions that we are considering
to be ¥, 95, then we can formulate the problem of fitting a function to the data as
an LMI. Let the set {z;,y;}/", with z; € R", and y; € R be the data that we are
attempting to fit. We look to minimize the error of the fit to some f € X, 9,, and
from Lemma 3.3 we know that this function can be represented by at least one matrix
M, € R >0, where ¢ = >, (”+:_1).

An important question in fitting the data is which error criterion should we use.

Is it relative error or absolute error that we really care about? Or, should we use a

combination? Here we will consider the following uniform error bound
f(@) —wy| <e i=1,...,m

with € > 0. We could switch to a relative error bound by replacing the € in the above
equation with ey;.
A sensible optimization problem is presented by the following LMI that drives our

data fitting effort for sum-of-squares polynomials

min e

U .
st. |\TiMyz, —yi| <e i=1,...,m

e>0
M,>0



22

with

>
Il
8

[P

Since LMI (3.5) is not an LMI in p, a way to solve the fitting problem is to start
with a small p and solve (3.5). If the e for this p is too large, then increment p and
solve (3.5) again. Repeating these steps until € is small enough forms a reasonable
algorithm for fitting data to an f € ¥, 9,. If the data comes from a function that is
nothing like a sum of squares polynomial, then even for large p the quality of the fit

will be low.

Considerations in the number of points to fit

Fitting the data to some f € ¥, 5,, is a fit whose parameters are described by

a ¢ X ¢ symmetric matrix, and thus has ala+1) degrees of freedom, where again ¢ =

2
P (n+i—1
1=0 7

). But since this matrix is not a unique representation of the polynomial
f € X,,2p, there are really only ¢ degrees of freedom. If m < ¢, the problem will be
under constrained and a perfect fit should be achievable. When m > ¢, the problem
will be over constrained and a small value for € will be achievable only when the data
comes from a function that is close to being in 3, 55, which inversely means that
achieving a small value for e for an over constrained problem shows that fitting with

a sum-of-squares function was reasonable.

3.4.2 Fitting general polynomials

Removing the positive semidefinite condition on a polynomial fit allows us to
search over all functions in P, , for some degree p. From Lemma 3.1 we know that if
p is even, then we can represent it as a ‘quadratic’ form, which need not be unique.
If we were not interested in a ‘quadratic’ form we can specify any f € P, , with a

single vector
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n+z"71)

3

Lemma 3.4 Every f € P, , can be represented uniquely by a vector c € BZLO(

Proof:
We can write any f € P, , uniquely in terms of each possible monomial
as
p (N7 .
2
Fa)=3_ > i
=0 j=1
or

/4

fl@)=) ¢l
1=0

n+i—1
with each ¢; € R, Stacking these vectors on top of each other
constructs the ¢ in the Lemma, and using notation as defined for the sum

of squares fit we can write the polynomial as f = c¢*z.

With this representation of any f € P, ,, we fit the data {z;,y;};, with a search

for a vector, ¢, that solves the following equation

— & - "
S S

2 c=| % (3.6)
| —— I =] [ Um ]

—— I —= (1 e
—-—— I3 —— Yo €2
2
¢ = | =e (37)
ok
| = T, == | Ym | | em |

If we are interested in minimizing the errors of the fit by minimizing ||el|o, this is just

a least squares problem. If we look to minimize ||e||, then we can write the fitting
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problem as a linear program. Also, we could consider a weighted problem where we
look to minimize ||We|, for some weighting matrix W and some norm b.

Like the sum of squares fit, this general polynomial fit requires us to pay some
attention to the the number of coefficients that we are fitting to insure that our fit is

4 (nﬂ'fl

im0 (s ) degrees of freedom, which implies that we

relevant. Again we have ¢ =

should take m > ¢ to have a sensible fit.
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Chapter 4
Simultaneous Stability

The question that motivates this chapter is: “Can we demonstrate stability for

all of the following systems?”

with 4; € R™", ; € R", and s finite. If the answer to the above question is yes,
then the systems could also have a special kind of joint stability, defined below. First,

we will define stability with the following theorem.

Theorem 4.1 (adapted from Theorem 1, §9.3 [HirS74]) Letz € R" be an equi-
librium of a C* map f:R" — R". Let V:U — R be a continuous function defined
on a neighborhood U C R" of =, differentiable on U — Z, such that

1. V() =0 and V(z) > 0 if v # T;
2. V<0inU—z.

Then Z is stable. Furthermore if also the inequality on V is strict, then T is asymp-
totically stable. Any V' that satisfies these conditions is referred to as a Lyapunov

function.

Corollary 4.1 If we restrict V' to be a polynomial and f to be linear we satisfy the
technical conditions and can take U = IR". The Lyapunov function, V, need only be

such that
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1. V(0) =0 and V(z) >0 if x #0;
2. VSOfor:v;éO.
to guarantee stability.

Now, we have the necessary ideas to define the type of joint stability in which we

are interested.

Definition 4.1 (Simultaneous Stability) A finite collection of dynamical systems,
{fi}s_, with &; = f;(x;), are called stmultaneously stable if there exists a single

Lyapunov function that demonstrates stability for each of the s systems.

Clearly, if any of the individual systems in (4.1) are not stable, then the collection of
systems will not be simultaneously stable. If we restrict our Lyapunov functions to
be polynomials and our systems to be linear, as in (4.1), we can establish a sufficient
condition for simultaneous stability of the systems by only checking the conditions in

the corollary.

4.1 Quadratic Lyapunov functions
Restricting our search to positive definite quadratic candidate Lyapunov functions,
V(z) = 2" Pz
with some P > 0, we get the following sufficient condition for simultaneous stability.

Lemma 4.1 The systems in (4.1) are simultaneously stable, if there erists a feasible

solution to the LMI

dP >0

(4.2)
st. A P+PA; <0 1=1,...,s

Moreover, the Lyapunov function that demonstrates the simultaneous stability is given

by V(x) = z*Px with P any feasible solution of (4.2).

Proof:
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Form the Lyapunov function V(z) = 2* Pz, with P any feasible solution
of (4.2). By P’s being a feasible solution of (4.2), we know that V(z) is
positive definite. The derivative of V' along the trajectories of each of the
s systems in (4.1) is of the form

V = i* Py + 2" Pi = o (A;“P + PA,')QS

which is negative semidefinite by LMI (4.2) for i = 1,...,s. Thus, the
constructed quadratic Lyapunov function demonstrates stability for all
systems in (4.1), implying that the systems are simultaneously stable.

O

If no feasible solution is found for (4.2), then we have shown that there exists no pos-
itive definite quadratic Lyapunov function that demonstrates simultaneous stability
for all of the systems in (4.1), but we have not shown that the set of systems is not
simultaneously stable. So, we must look to other Lyapunov functions to demonstrate

simultaneous stability.

4.2 Homogeneous sum of squares Lyapunov func-

tions

Generalizing the idea from the previous section we can attempt to find Lyapunov
functions that are polynomials with degree greater than two. Taking V' (z) € X, 2, N
H,, 2, we have homogeneous sum of squares polynomials of degree 2p as our Lyapunov
functions. By the definition of the sets of polynomials we know that V' (z) > 0 and
V(0) = 0 for p > 1. Lemmas 3.2 and 3.3 tell us that we can write V' with some M >0

as
V(z) = Pl Ml (4.3)

which is not a valid candidate Liyapunov function since it is only positive semidefinite.
We can get the required definiteness by considering only V’s that have M > 0 or V'’s
that are everywhere no smaller than some positive definite function. Requiring M
to be positive definite is more restrictive, so we will take the approach of requiring
V(z) > g(x) with g(z) > 0.
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Definition 4.2 Define the set

7. {X > 0 RO Lol xab) - ngp}

=1

which gives positive definite functions g(z) = aP* [z = Yo 2’ >0 for I, € I,

Remark: The choice of notation for Z, becomes clearer when we notice that Z; =
{I,xn}, the n by n identity matrix.

The previous definition sets up the following lemma

Lemma 4.2 Take g(z) = 2P [z and V (z) = 2P MzP) with M > 0. If M—e I, >
0 for any € > 0 and at least one I, € T,, then V(z) > 0.

Proof:
M — efp > 0 implies

TPk [M - efp] 2?1 >0 = Pyl > ex[p}*fpx[p]
= V(z) > eg(x)
By the definition of Z, we can see that g(z) = Y., 77, which implies
that g(x) > 0, Va # 0, making V' (z) positive definite.

The functions ¢ that are described by fp are far from being all the positive definite
functions on z, but this condition is much more relaxed than requiring M > 0 and it
also fits into our LMI frame work.

Now that we have a valid candidate Lyapunov function we can give an LMI suffi-
cient condition for simultaneous stability that parallels and actually includes Lemma

4.1.
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Lemma 4.3 The systems in (4.1) are simultaneously stable, if there ezists a feasible

solution to the LMI

M > 0
ElTij (17.7) € ({17'-' 78}X {17"- 7qn,p})
5.t. M—el, > 0

IN

(mhm+M()@+%%@ 0 i=1,... .5
(4.4)

for some € > 0, at least one fp € fp, and the Q;’s as defined in §3.2.1. Moreover, the
Lyapunov function that demonstrates the simultaneous stability is given by V(x) =

oP Mzl with M any feasible solution of (4.4).
Proof:

Form the Lyapunov function V(z) = zP*MzP! with any M that is a
feasible solution to (4.4), which via Lemma 4.2 we know is positive definite.
Differentiating along trajectories of any of the s systems in (4.1) we get

vV = (x[P]>* MzlP! +$[”]*M (x[i”]>

dn,p

where equality (a) comes from Theorem 2.2. V, as given in the last line
of (4.5), is negative semidefinite due to (4.4) for 7 = 1,...,s. Thus, the
constructed Lyapunov function demonstrates stability for all systems in
(4.1), implying that the systems are simultaneously stable.



30

O
The addition of the @);’s to the LMI does not change the Lyapunov function; it just
adds degrees of freedom to the LMI which make it feasible for more extreme sets of
A;’s.

Like the result in §4.1, the above lemma lets us know if there exists a Lyapunov
function of a specific form and is just a sufficient condition for simultaneous stability.

This lemma can also be found in a modified form in [Zel94] as Theorem 2.

4.3 General sum of squares Lyapunov functions

The previous section considered sum of squares polynomials as candidate Lya-
punov functions, with the restriction that they were also homogeneous, and it would
seem only logical that by further expanding our class of candidate functions to non-
homogeneous sum of squares polynomials we could prove simultaneous stability for
sets of linear systems that failed the feasibility problem of (4.4). Unfortunately this

turns out not to be true in the sense of the following definition and theorem.

Definition 4.3 (Candidate Sum of Squares Lyapunov Functions) Define the

set
; _ - - - \
1 1
0
x z -
C,=1{ f= ' M . €EXnop: f(0)=0andIe>0: M > ¢ 1,
: . 0
\ I 2P | I 2P | )
(4.6)

with1 <1< p and I, € T;, as all functions in Yn,2p that meet our definiteness criteria

to be considered candidate Lyapunov functions.

Similar to §4.2, the set defined in (4.6) does not contain all positive definite sum of
squares polynomials of degree 2p, but it does contain many more than those poly-
nomials in Y, 9, which can be written with a positive definite matrix via Lemma

3.3



31

Theorem 4.2 If there exists no Lyapunov function V € C, that demonstrates simul-
taneous stability for the set of systems in (4.1), then, if there exists a V € Cpy1 that
demonstrates simultaneous stability for (4.1) there also exists a V € Cpiq N Hyo(p41)

that does the same.

Remark: If we were looking for a minimum degree sum of squares Lyapunov function
that meets the definiteness constraints of C, and demonstrates simultaneous stability
for (4.1), then we would only need to check the homogeneous ones following Lemma
4.3 for increasing p.

Before we can prove Theorem 4.2, we need the following lemma and definitions

Lemma 4.4 If the matriz M > 0 is partitioned as

M M
M _ [ 11 12 ]
My, My

and M11 = 0, then M12 =0 and M22 2 0.

Proof:

First, we know that since M > 0, all symmetric blocks along the diagonal
are also positive semidefinite, implying My, > 0. For M5 = 0, construct
the Schur form of M

[Mll MlQ]:[Ull U12]*[D11 0 :|[U11 U12:|
M1*2 M22 Uﬁ U22 0 D22 Ufg U22

Since M7, = 0, there are enough zero eigenvalues to make D;; = 0 which
forces My, = 0.

Definition 4.4 For ease of notation, define

T M171 M12 Ml,p

[2] M*, M. M
R x ~ 1,2 2,2 2,p
gl = : My == | . .

zlP) | My, M3, ... M, |
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and

with QE;]}J defined so that
im*@;]],jﬁc[p] = g Q 2 = 0

Now with Lemma 4.4 and the extended definitions above, we can attack the proof
of Theorem 4.2 in an orderly fashion.

Proof: Theorem 4.2

Looking first at C, we remember that due to Lemma 3.3 we can write any

f €Y, as
[ 17 [ Moo Moy Mo Moy | [ 1]
x Mg, My My M, x
f(z) = o Mg, My, My Mo,y z?
L x[p] . L Mékap Mip M2*ap Mp P L x[p] .

with the restriction from C, that f(0) = 0, we know that Mo = 0, which
with Lemma 4.4 gives

f(z) = 27 M3

and

for some € > 0, 1 < [ < p, and I, € Z; imply that f is a valid candidate
Lyapunov function.

With these results we can restate the non-existence of a Lyapunov function
in C, that demonstrates simultaneous stability for (4.1) as the infeasibility



of the following LMI

My > 0
HTijk
0
s.t. My, — ¢ I > 0 (4.7)
0

qn,k

p B
. ~ ~ ~ /\[k]
= ]:

IN
o
I
ur—*
“Cra

with (4,5,k) € {1,...,s} x {1,... ,qnx} X {1,...,p}, € > 0, some [ €
{1,...,p}, and I; € 7,.

Looking for a Lyapunov function in Cpy; is the search for a feasible point
for the following LMI

My > 0
Esz'jk;
0
s.t. M[p-l-l] — € il 2 0
0
p+1 4n, k] )
A[p+1} Mip 1) + Mip Ay + Z Z [ Qpiyy; < 0 i=1,...,5s

(4.8)

with (4,7,k) € {1,...,s} X {1,... ,qur} x {1,...,p+ 1}, € > 0, some
le{l,...,p+1},and I, € 7,.

We know that if LMI (4.8) has a feasible solution it must be of the form

X My pia
My = Mo Mt 1 5,
Ml*p-l-l M2*p+1 s ‘ Mp+1,p+1
with
-~ 0 ~
M1 — ¢ I >0

Notice that (4.7) is almost a sub-problem within (4.8), and if (4.8) is
feasible while (4.7) is not, then for a feasible solution of (4.8) either M, =

33
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M[p+1] — € 0 >0 (49)

is the only valid definiteness constraint.

If M[p] = 0, then via Lemma 4.4, V' € Cp4, is given by

V() = 2P W My pyrat

which takes us to Lemma 4.3 as the Theorem claimed.

It M[p] # 0, then in order for the last set of constraints in (4.8) to be
feasible its diagonal entry of

An,p+1

ALD+1]fMp+1,p+1 + Mpi1pr1Apt1yi + Z Tijp+1Q@j < 0
j=1

must also be feasible, and the definiteness requirement of (4.9) forces

Mpi1p41 —€lpp1 20

which are again the constraints for Lemma 4.3.

4.4 Examples

Looking to examples, we will now show how a useful model fits in our framework

of (4.1).

Lemma 4.5 If the set of systems {A;}5_, is simultaneously stable, then the time

varying linear system

18 stable as

intervals.

—  A@)z(t)

= Co{A,..., A} = {i a;(t)A; 1 0<aq;(t) <1 Zai(t) =1, Vt}

i=1 %

long the a;(t)’s have only a finite number of discontinuities on finite
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Proof:

Use the Lyapunov function that demonstrated the A;’s simultaneous sta-
bility to show the stability of linear time varying system in (4.10).

4.4.1 Robustness Bounds

The following example for robustness bounds of a linear time varying system
originally appeared in [Zel94]. We would like to know the maximum value of k for

which the following system is stable

T | 0 1 z1
)L AL &

with 0 < u(t) < k. We can rewrite this problem as

2] )] o

with 0 < a(t) <1, or in the form of Lemma 4.5
T 0 1 0 1
iy 2 1| —2-%k —1
(4.13)

which gives a sufficient condition for stability as the simultaneous stability of the two

+ a(t)

=A@ | ™

T2

] A(t)EA::Co{

matrices above. The LMI feasibility problem associated with Lemma 4.3 for (4.13)
is quasi-convex in k, so, for a fixed p, we can do a bisection on £ to find the largest
value that makes the LMI feasible. In [Zel94], p = 1 (quadratic), and p = 2 (quartic)
sum of square Lyapunov functions are considered and largest £ for which he can
demonstrate stability is 5.73. [XieSF97] considers the same example, but approaches
the problem with Lyapunov functions that are piecewise maximums of quartic sum

of squares polynomials, and finds a maximum value of k£ of 6.2.
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Figure 4.1: Maximal values of £ for which we can demonstrate stability of the time
varying system in (4.13) as a function of the degree of the sum of squares Lyapunov
function. The dashed line gives the maximum value of k£ reported in [XieSF97].

The results of taking larger values for p are shown in Figure 4.1, which gives
the maximum value of k£ for which we can demonstrate stability of the system in
(4.13) as a function of the degree of the sum of squares Lyapunov function. Picking
an arbitrary largest value for p of 10, we can demonstrate stability for (4.13) with
k < 6.86.

The ideas in this example easily extend to a larger number of perturbations to the
plant, but with more than one perturbation, the bisection technique will no longer

work.

4.4.2 Intermittent information observer

Consider now the problem of building an observer for system that has two outputs
Y0, and ¥y, where we are always allowed to use yo for the observer, but we only receive
1, intermittently. An observer for platoon activity can be cast into this form by letting
all the on-board sensors be 7, and letting all the sensor data that comes from all the
other vehicles be y;. y; is subject to some non-trivial packet loss since it needs to
be transmitted over a possibly very noisy radio link, and can thus be considered
intermittent. The question of showing that this observer is stable can be cast into

the form of Lemma 4.5 by looking at the error dynamics of the observer. First, we
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will write the plant as

T A B
T
yo | = | Co Do [ ]
U
n Ci D,

and the observer as
4 = A% + Bu — K, (yo — o — Dou) —at)K, (y1 —Cii— Dlu)

where a(t) € {0,1} tells us if y; is being received or not. If we define the observer

error as e = ¢ — Z, we find it evolves as
é = Ae — K\Cpe — a(t)K,Cie (4.14)
or in the form of Lemma 4.5
¢ = [a(t) (A — KoCy — chl) +(1—al?) (A - KOCO)] e (4.15)

So, in order to establish stability of this observer’s error dynamics we need only follow
Lemma 4.3 for the matrices above, as long as a(t) has only finite discontinuities on
finite intervals, which hopefully any transmission network would. It is important
to note that in the framework of Lemma 4.3, we will be solving this problem for all
possible signals a(t) which will add an additional layer of conservatism to our stability

results.
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Chapter 5

Conclusions

The power transformation that forms the heart of this report has been around for
almost thirty years, but due to its complexity and the non-uniqueness it instills in the
matrix forms of polynomials, it has seen only sporadic use. The transform proves to
be very useful in that it allows us to form a generalized S-procedure easily and also
it makes considering higher than quadratic order polynomials as Lyapunov functions
easier.

The most promising directions for extending the results of this report look to be in
the application of these methods to actual problems. The sum of squares Lyapunov
approach is valid for many other problems than the two considered examples and could
become a very useful way to investigate stability of linear time varying systems, since
many time varying systems can be formulated as time varying convex combinations

of a finite set of linear systems.
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