User Guide for Simulation-Aided Robust Region-of-Attraction
Analysis Software

1 Initializing the parameters used in the analysis
and GetRoaOpt.m

GetRoaOpt .m creates/initializes the options and the system used in the analysis.

Syntax:
[roaconstr, opt, sys] = GetRoaOpts(fWithDel, x, zV, p, Bis)

Inputs:

e fWithDel: the vector field as a vector of polynomials (contains both state variables
and uncertain parameters)

e x: the state vector as a vector of fist degree monomials

The following inputs are optional and can be changed after calling GetRoaOpt.m. Pre-
specifying them may be useful as the choices made on these parameters affect some
of other parameters and GetRoaOpt.m initializes these extra parameters based on the
pre-specified values.

e 7V : [optional, default: purely quadratic monomials in x| basis vector for V
e p: [optional, default: 27 x] shape factor
e Bis: [optional] struct with the following fields.

— Bis.flag: equal to 1 for SOS conditions with bisection, 0 for SOS conditions
without bisection.
— Bis.s2deg : [default: 1] HALF of the degree of s, (used when flag == 1)

— Bis.rldeg : [default: 2] degree of r; (used when flag == 0)

Bis.r2deg : [default: 2] degree of ro (used when flag == 0)

Outputs: Three structs roaconstr, opt, and sys. Roughly, roaconstr holds the
parameters used to specify the SOS problems (such as basis for V and the multipliers,
l; and [y, etc). opt holds the options for the code. sys is the structure describing the
system in different forms, state vector, uncertain parameters (if any), etc. For a given
problem, some of the fields of sys may not be used.

roaconstr.

zV [monomials(x,2)] Basis for V.

p [#7z] Shape factor.

mu 0] pin V< —pV

L1 [le-627z] I} in V — I} € X[x]

L2 [le-62T2] I in V constraint

L2LP [#7z] This was experimental purposes - not used in any of the reported results.
If opt.findVfeas.feasonly == 0, this has no effect.

zl [chosen to match degrees in SOS condition based on p and zV]
Basis for s1 (s1 = 21'Qz21)

72 [monomials(x,1)] Basis for sy (s3 = 22'Q22)

z3 [chosen to match degrees in SOS condition based on z2]
Basis for s3 (s3 = 23'Q23)

zrl [monomials(x,2)] Basis for r (1 = ¢'zrl)

zrl [monomials(x,2)] Basis for ry (13 = ¢'2r2)

opt.

opt.coordoptim.

flag [0] equal to 1 for SOS conditions with bisection and
0 for SOS conditions without bisection

MaxIters [20] Max number of iterations in coordinate-wise affine search

IterStopTol [0.03] Stopping tolerance in coordinate-wise affine search

solver ['sedumi’] Name of the solver 'sedumi’ or ’sdpt3’ (This may not be used

currently, meaning that everything is hardwired to ’sedumi’)

opt.display.

sedumi [0] turn SeDuMi display on and off, 0 for off and 1 for on
roaest [0] turn all ROA estimation printouts on and off, 0 for off and 1 for on
BB [1] turn summary outputs at the end of each B&B iterations on

and off, 0 for off and 1 for on

opt.SaveResults.
filename ['] Only used in B&B to save results on the go if a path to

2

a file is specified.

opt.parallel.
useCluster [0] 1 to use cluster and 0 for not to use the cluster
machinesToUse [1:9] double array with the "node” ids to be used
opt.sim.
Betalnit [5] Beta to run the first simulation
BetaShrink [0.95] Factor by which Beta is decreased
if there is a divergent trajectory or the LP is not feasible
BetaMax [5] Max value of Beta for simulations
BetaGrow [2] Factor by which Beta is increased
NumConv'Traj [100 4 4™] Number of convergent trajectories per system
tfinal [100] Final time for simulations
tfinalBackForDiv [10] Time to integrate a divergent trajectory backward in time
dispEveryNth [100] display results during simulation after every dispEveryNth-th

event_params

convergent simulation.
parameters for the event function to stop the simulations.

opt.sim.event_params.

nbig Stop simulation if ||z(t)|| > nbig * ||zo|| and assign divergent

nsmall Stop simulation if ||z(t)|| < nbig * ||zo|| and assign convergent

xbig Stop simulation if ||z(t)|| > xbig and assign divergent

xsmall Stop simulation if ||z(¢)|| < zsmall and assign convergent

opt.lp.

useVdot [1] If 1 use V < 0 in forming LP, if 0 do not

useVdecr [0] Tf 1 use V(k+ 1) — V(k) < 0 in forming LP, if 0 do not

decimN [10] Take every decimN-th point on simulation trajectories

timestosolvelp [40] Number of times to decrease Beta and resolve LP if the previous
LP is infeasible

MinBetaToTryLP [le-3] Min value of Beta to try to solve the LP

sampleForPositive [0] 1 if V(x) > [4(x) is imposed on sample point instead of imposing
V — 1y € ¥[z] (Experimental - not really used)

timesSampleLMI [1000] Number of sample in {x : ||z|| < radiusSampleLM1I}
when sampleForPositive = 1 (Experimental - not really used)

radiusSampleLMI [0.1] radius of the ball to be sampled when sampleForPositive = 1
(Experimental - not really used)

opt.findVfeas.

usesosp
feasonly

useYalmip
sedopts.

[0] 1 to use Pete’s mysos. (Pete’s mysos does not work.)

[1] 1 to solve only a feasibility “LP”

(This is only for experimental purposes, not used currently)
[1] 1 to solve the “LP” using Yalmip, 0 to use Pete’s mysos.
To set SeDuMi options when Pete’s mysos is used

(Pete’s mysos does not work.)

opt.findVfeas.sedopts.

eps
fid

solver

[1e-9] Stopping tolerance for SeDuMi

[opt.display.sedumi] 1 to display SeDuMi data

'sedumi’] Name of the solver 'sedumi’ or ’sdpt3’

(This may not be used at the time being meaning that everything
is hardwired to ’sedumi’)

image’] An option used in Pete’s mysos when passing from
the SOS problem to SDP.

opt.sampleV.
nofVs

nofptsEachTime

uselLin
useVsos
Factor

runtoNmax

[5] Number of V’s to be drawn from the convex outer bound for

the original feasible set

[5] Number of V’s to be generated from which a sinlge V' will be

drawn as a Lyapunov function candidate (i.e., every nofptsEachTime-th
point is chosen as a Lyapunov function candidate - to promote randomness
in generating candidate V'’s

[1] 1 to use linearization constraints when sampling for V', 0 otherwise
[1] 1 to use V —[; € X[x] constraint when sampling for V', 0 otherwise
[0.5] Stop sampling when sample V' certifies Factor x BetaSIM

(when runtoNmax = 0)

[0] 0 to stop sampling once BetaCertified > Factor * BetaSTM,

1 to generate nofVs many candidates and taking the best when if
BetaCertified > Factor x BetaSITM is satisfied

opt.getgamma.

bistol
maxgamma
maxgammabBase

mingamma
display
usesosp
sedopts

[5e-3] Bisection stopping tolerance for gamma
[10] Only used for bisection

[opt.getgamma.maxgamma] opt.getgamma.maxgamma is changed at several
places in the code. This is used to re-set it to its initial value

[0] Only used for bisection

[opt.display.roaest] 1 to display getgamma printouts

[0] 1 to use Pete’s mysos (Pete’s my sos does not work)

[sedopts] See sedopts

opt.getbeta.

bistol [5e-2] Bisection stopping tolerance for beta

maxbeta [20] Only used for bisection

minbeta [0] Only used for bisection

display [opt.display.roaest] 1 to display getbeta printouts
usesosp [0] 1 to use Pete’s mysos (Pete’s my sos does not work)
sedopts [sedopts] See sedopts

opt.cellBeta.

NumberfsInFirstPhase [0] 0 for center — vertices analysis, -1 for direct analysis
with all vertices, positive integer for the number of systems to be sampled in A
checkPriorV [0] If 0 or prior V is zero (or not passed in), run sim-based

analysis directly. Else, assess the prior V first.

opt.BB.
max_iter [20] Max number of B&B iterations
SubdivisionRule [’SubdivisionRule’] Name of the .m file which outputs the division rule

FactorNomSimCellBeta [0.5]
FactorNomStartPriorCellBeta [0.75]
NumberExtraNominal [0] Number of extra vertex vector fields in addition to the center
in cellBetaCenter
runBB [0] 1 if wrapper is to run B&B, 0 if wrapper is to run only cellBetaCenter
logToDiv [zeros(length(sys.delvector))] i-th entry is 1 if the i-th direction
is to be divided in log (base 10) scale.

sys.
delvector vector of uncertain parameters (polys)

fWithDel nx1 poly array, vector field with uncertain parameters

X state vector (poly)

nonaffine non-affine functions of uncertain parameters (polys)

f nx(m+mpu+1) matrix of poly, fWithDel decomposed so that

fWithDel = f(:,1) + >0 f(:,i + 1) = delvector (i)
T f()+ m o+ 1) % nonaf fine(j)
Example: For z the state vector, d; and d, uncertain parameters,

f(,8) = fo(x) + 61 f1(z) + G2 falz) + 01 f3(2)

5

Sys is
sys.delvector = 0
sys. fWithdel = fo(z) + 61 f1(x) + dafo(z) + 63 f3(x)
SYys.x =T
sys.nonaf fine = [07]

sys.f = [fo(z) filz) folz) fs(z)].

2 wrapper.m

This routine is for relatively easier use of several functions in in the analysis.

Syntax:
outputs = wrapper(sys, c,roaconstr, opt)

See the help for wrapper.m for more detailed explanations. Roughly, it currently does
one of the following depending on the form of the input:
e Given (non-uncertain) vector field compute the ROA

e Given uncertain vector field and a point in Delta, compute the ROA for the system
corresponding to that point

e Given uncertain vector field and Delta, compute the robust ROA (center — ver-
tices).

e Given uncertain vector field and Delta, run the branch-and-bound refinement

3 cellBetaCenter.m

